
CrossGrid User Guide

Task 3.3.1: OCM-G

Task 3.3 – Grid Monitoring

Document Filename: cg-wp3.3-ocmg-devguide

Workpackage: Task 3.3 – Grid Monitoring

Partner(s): CYF, (TUM)

Lead Partner: CYF

Config ID: cg-wp3.3-ocmg-devguide-v0.1

Document classification: PUBLIC

Abstract: This is the developer’s guide for the Grid application monitoring system OCM-G, developed
within the CrossGrid project.

cg-wp3.3-ocmg-devguide PUBLIC 1/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Delivery Slip

Name Partner Date Signature

From Bartosz Balís CYFRONET
AGH

Aug 2004

Verified By
Approved By

Document Log

Version Date Summary of changes Author

1-0 Jan 13th, 2005 First version Roland Wismüller, Bar-
tosz Balís

cg-wp3.3-ocmg-devguide PUBLIC 2/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Contents

CopyrightNotice 5

1 About the software 6

2 Introduction 8

3 A Basic Outline of Available Services 9

3.1 Classification of Monitoring Services . 9

3.2 Introduction to Monitoring Services . 11

3.3 Examples . 13

3.4 Interface Procedures . 15

3.5 The Tools’ Scope . 15

3.6 Remarks . 16

4 General Description 18

4.1 Interface Procedures . 18

4.2 Service Requests . 23

4.3 Service Replies . 29

4.4 Description Method for Services . 34

5 Specification of the Basic Services 38

5.1 System Objects . 38

5.2 Monitor Objects . 52

6 Specification of the Generic Application Extension 54

6.1 Data Types . 54

6.2 System Objects . 54

7 Specification of the Performance Analysis Extension 56

7.1 Data Types . 56

7.2 Services . 58

8 Specification of the Symbol Table Extension 63

8.1 Introduction . 63

8.2 Services . 63

9 Specification of the G-PM Extension 64

9.1 Introduction . 64

9.2 Services . 64

cg-wp3.3-ocmg-devguide PUBLIC 3/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

10 The OCM-G Extension Interface 67

10.1 The C-Interface for Services . 67

10.2 The C-Interface for Tokens . 82

10.3 Complete Example Code for an Extension . 90

11 GNU GENERAL PUBLIC LICENSE
Version 2, June 1991 92

cg-wp3.3-ocmg-devguide PUBLIC 4/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Copyright Notice

Copyright (c) 2004 by ACC CYFRONET AGH, Krakow, Poland; AGH University of Science
and Technology, Krakow, Poland; Technische Universität München, Germany; Universität
Siegen, Germany. All rights reserved.

Use of this product is subject to the terms and licenses stated in the GPL license agreement. Please refer
to Chapter 11 for details.

This research is partly funded by the European Commission IST-2001-32243 Project CrossGrid.

cg-wp3.3-ocmg-devguide PUBLIC 5/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

1 About the software

The OCM-G (Grid-enabled OMIS-Compliant Monitor) is an application monitoring system which sup-
ports both cluster and Grid environments based on Globus 2.4, in particular the CrossGrid (and Data-
Grid) testbeds. The purpose of the OCM-G is to provide on-line information about a running parallel /
distributed application to application-development-support tools, specifically performance analysis tools,
like the G-PM tool. The information is obtained via a standardized interface OMIS.

This document is intended for tool developers who would like build tools for application development
support compliant with the OCM-G and the OMIS specification.

For information concerning installation and running of the OCM-G, refer to OCM-G Installation
Guide. Details concerning the using the OCM-G by application developers are covered in OCM-G
User Guide.

Fig. 1.1 shows the run-time components of OCM-G, their distribution across the different kind of machines
in the Grid, and their communication topology.

The OCM-G is a distributed system composed of three types of components.

1. Service Managers (SM) – one for each site of the target system. Started automatically on site’s
computing element (CE) machine.

2. Local Monitors (LM) – one for each host of the target system. Started automatically on worker
nodes (WN) where there are application processes running.

3. Main Service Manager (MainSM) – one for each grid user in the system. Currently started by the
user manually on the machine of his choice, usually the User Interface (UI) machine.

Fig. 1.1 shows the distribution of these components in a sample grid environment. Note that Local
Monitors handle application processes running on Worker Nodes. The user can launch a tool, such as
the G-PM performance analyzer for grid applications, which connects to the OCM-G via the MainSM.

Tools connect to the OCM-G and communicate with it via a standard interface OMIS (On-line Monitoring
Interface Specification), which is described in this document.

cg-wp3.3-ocmg-devguide PUBLIC 6/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Tool

LM

AP
AM

AP
AM

AP
AM

LM

SM

CE

WNWN

AP
AM

SM

AP
AM

LM

Non−OCM−G component:

MainSM

UI

CE

WN

OCM−G component:

SM: Service Manager process
MainSM: Main Service Manager process

LM: Local Monitor process
AM: Application Monitor library linked into

application process

AP: Application process
Tool: Tool process

UI, CE, WN
Execution context:

Globus−IO communication, arrow indicates
direction of connection establishment

Local process control using
ptrace system calls and
shared memory segmentTemporary globus−IO connection during

start−up

Figure 1.1: Components of OCM-G at run-time

cg-wp3.3-ocmg-devguide PUBLIC 7/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

2 Introduction

The OCM-G is based on the On-line Monitoring Interface Specification (OMIS) [1], a standardized spec-
ification for interface of communication between tools and on-line monitoring systems. Tool developers
who would like to base their tools’ functionality on the OCM-G need to know the following topics, which
are covered by this document:

• The OMIS API to communicate with the monitoring system.

This is covered in Chapters 3 and 4.

• The syntax and semantics of OMIS services to send monitoring requests to the OCM-G and handle
replies incoming from the OCM-G.

These services are specified in Chapters 5 to 9.

• The Specification of the G-PM Extension Interface in case the developer wants to extend OCM-G
capabilities with new monitoring services.

This is documented in Chapter 10.

Note that Chapters 3 to 5 are an updated excerpt from the original OMIS 2.0 specification [1]. In contrast
to [1], this document contains only the specification of services actually implemented in OCM-G.

cg-wp3.3-ocmg-devguide PUBLIC 8/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

3 A Basic Outline of Available Services

Since a central idea of OMIS is to provide an interface that allows complex requests to be built by
combining primitive ones, the tool/monitor-interface is based on a language in order to achieve the
needed flexibility. The tool/monitor-interface basically consists of a single procedure that can be invoked
by both centralized tools and components of distributed tools. In addition, a few other procedures
are available for maintenance purposes (see Section 4.1). The main procedure receives a string as an
input parameter, interprets this string, and returns a result that is represented as a data structure. The
individual monitoring functions available by invoking this procedure are called services; the string that
is passed to the procedure (requesting the activation of a service) is called service request, the result is
called service reply.

In order to meet the efficiency requirements, the structure of a service request follows the event-action-
paradigm, allowing the monitoring system to quickly react on state changes in the monitored system
without having to communicate with the tool. A service request can consist of an event definition x
associated with an action list y, meaning “whenever an event matching the event definition x occurs
invoke the actions in y, passing some relevant information on the event occurrence to these actions”. If
no event definition is present, the service request is unconditional and all actions are invoked immediately
and exactly once.

The interface procedure accepts requests for all nodes the monitoring system is responsible for; therefore,
a distributed tool component can request services not only for objects on its local node, but also for any
object. Likewise, the actions associated with an event can be requests for services on objects located on
a node different from the one where the event occurs. The monitoring system automatically takes care
of forwarding the requests to the proper nodes. In addition, we allow services that are global, i.e. that
involve more than one node.

The next section introduces the different classes of services available at the tool/monitor-interface; Sec-
tion 3.2 provides a basic outline of the mechanisms and the syntax used in this interface. Section 3.3
presents two examples giving an impression of the interface’s expressiveness. A detailed description of
the interface procedures is contained in Section 3.4. In section 3.5 we discuss the the scope of tools,
i.e the set of objects that they control. Section 3.6 finally presents some additional remarks on the
tool/monitor-interface.

3.1 Classification of Monitoring Services

The services that are offered by the tool/monitor-interface can be classified according to three different
properties:

• First, we can classify services according to their input/output behavior:

1. Information services. These services are exclusively meant for observation of the program
and the monitoring system. The result of their invocation will contain information about the
current state of the monitored system (including the monitoring system itself). Examples are
“return the value of a variable x of process y” or “return the CPU time of a process”.

2. Manipulation services. These services manipulate the objects that are listed in the param-
eters of the service call. Thus, they change the internal state of the program or the monitoring
system or both. Examples are “stop a process”, “set a variable of a process to a given value”
or “raise a user1 defined event”.

1The user here is a tool, not the application programmer.

cg-wp3.3-ocmg-devguide PUBLIC 9/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

3. Event services. In contrast to the two classes already introduced, event services do not have
a direct reply. Instead they are used to trigger lists of manipulation services and information
services which are called action lists. An event service defines a class of events to be observed.
We call an ’event’ the situation where a specific change in the state of an observed object
occurs. Whenever an event belonging to that class occurs it triggers the specified action list.
The replies to the latter are collected and sent back to the tool. In fact there are also reply
values of an event service. They are called event context parameters and their values are
handed over to the manipulation services and information services to be invoked. By that the
latter are parameterized and may react on events in different manners depending on the actual
values of the event context parameters.

We do not know in advance how many times an event of the given class will occur nor when
this might happen. Thus, the tool does not know how many replies might arrive and when.

Obviously, an event service cannot be used as a complete request as its result can only be
observed in the form of results of action lists triggered by this event.

The description of services in Chapters 5 to Chapter 9 is structured according to these classes.

The interface specification defines the way requests can be composed by using above mentioned
categories of services. Details on the syntactical structure of requests will be given in the next
section.

Logically we have to distinguish two situations: requests that are unconditional and yield results
immediately and conditional requests where something has to be done whenever an event of a
certain class occurs. Unconditional requests are composed by a well-defined set of manipulation
services and information services of any size. Rules for the sequence of invocation of the individual
services will be introduced later. With conditional requests we simply add one event service to an
unconditional request. It specifies the condition under which the request will be triggered.

• Services can be classified according to the type of objects they refer to. On the first level, we
distinguish between system objects and monitor objects. System objects are those objects being
part of the monitored application or of the hardware the application is executed on. Currently, six
different types are supported by the basic services:

1. processes,

2. threads,

3. messages and message queues,

4. nodes of the parallel or distributed computing system, and

5. sites representing local clusters of nodes.

This selection reflects of course our decision to concentrate on the message passing paradigm in
the current version of the specification. Although not yet included here we are working towards
extending OMIS for the shared memory programming paradigm. The integration will add new
objects to the above list, e.g. memory regions.

Monitor objects are those objects that are introduced by the monitoring system itself. For example,
each conditional service request is a monitor object, since it has to be stored in the monitoring
system and can be manipulated using other services. Other monitor objects are user-defined events
or timers and counters, although the latter are not included in the basic specification.

Since this classification of the monitored system into a hierarchy of objects is a natural way of structuring
the monitoring services, we are thinking towards the future use of object oriented paradigms for the
tool/monitor-interface instead of the current one, that is object based but does not apply inheritance.
By exploiting inheritance, object oriented techniques could provide a way to define the interface at an
abstract level independent of the supported programming paradigms and concrete libraries. Services
specific to a certain programming library could then be realized by an extension to the generic monitor
that implements object classes (e.g. PVM task, MPI processes) derived from the interface’s base classes
(e.g. abstract process).

cg-wp3.3-ocmg-devguide PUBLIC 10/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

3.2 Introduction to Monitoring Services

This section is intended to give an impression of how the syntax of service requests and service replies looks
like and how unconditional and conditional requests are composed. For a complete formal description of
the request and reply syntax and semantics, please refer to Chapter 4. The discussion here will not cover
all relevant aspects. Instead it will try to introduce the concepts that will be used.

3.2.1 Unconditional Requests

An unconditional request, also called action list, is syntactically composed of a list of information services
and manipulation services. A simplified definition looks as follows2:

action list ::= action | action [’;’] action list
action ::= service name ’(’ parameters ’)’

The individual actions of an action list are concatenated either directly or by means of a semicolon. This
distinction gets important as soon as individual actions refer to different nodes of the target system.
In this case it is possible to execute actions in parallel. A direct concatenation by definition expresses
the possibility for parallel execution whereas a semicolon forces the monitors on the individual nodes
to globally synchronize before they continue with the next action. For example an action list “a b ;
c” expresses that actions a and b can be executed in parallel (if possible) but both of them have to be
completed before action c can be invoked.

The service name identifies the requested service. It may either belong to the class of basic services or
of extension services. As extensions are optional it is the task of the monitoring system to check for
available extension service identifiers and provide the tools with the necessary information.

Of course we also need parameters for the individual actions of our list. Parameters are defined as follows:

parameters ::= parameter list | ε
parameter list ::= parameter | parameter ’,’ parameter list
parameter ::= integer | floating | string | token | binary

| list | ev ctx param
ev ctx param ::= ’$’ identifier
token ::= identifier | identifier ’<’ index ’>’
index ::= identifier | ev ctx param
list ::= ’[’ parameters ’]’

Each parameter is either of the standard data type integer, floating, string, or binary or of the
special data type token, list, or ev ctx param. The meaning of the standard data types should be
intuitively clear. Detail will be given in section 4.2.2. The special data type token is used for addressing
in a platform independent way objects of any type, i.e. system objects and monitor objects. OMIS also
supports tokens, which identify arrays. The index, which again is a token, is enclosed in ’<’ and ’>’.
Finally, the data type list allows to compose lists of all other data types including the list type itself.

Where the service name specifies the action to be invoked it is the role of the token to determine the
objects that are to be used. In the most simple case the token is directly an identifier for an object the
service works on. E.g. the token might specify a process where the service is “stop a process”. More
complex situations can be mastered by using token lists. For the same service a token list might specify
a set of processes to be stopped.

2A special syntactical construct to lock the monitoring system during the execution of an action list is left out here for
simplicity.

cg-wp3.3-ocmg-devguide PUBLIC 11/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Tokens also offer an expansion mechanism. A node token used with the above service means: stop all
processes on the specified node. The node token is expanded to a list of process tokens before the service
is activated. The other direction is called localization. If we use a thread token with the same service,
the system replaces the token with the corresponding process token, i.e. with the token of the process
that runs the thread.

Expansion and localization can also be mixed in a token list: a complex list might comprise node tokens
and thread tokens. It is translated into the list of tokens of the corresponding process before activation
of the service.

A special semantics is defined for empty token lists. They are expanded to a non-empty list of tokens
refering to all currently monitored objects of the type the service works on3.

Let us assume that a service needs to address all currently monitored processes in the system. The
process token input parameter of the service gets an empty token list when the request is sent from the
tool to the monitoring system. The empty token list is expanded at the moment where the service is to
be performed. By means of this just in time expansion we are able to handle dynamically changing sets
of objects (nodes, processes, etc.). A more detailed description of the token data type can be found in
section 4.2.2.1.

Finally, the event context parameter ev ctx param is used to transfer information from event services to
information services and manipulation services. A parameter of this type describes an output parameter
of an event service (e.g. $node, $time etc.). A fixed set of event context parameters is provided by OMIS
itself. Extensions are free to introduce additional parameters.

3.2.2 Conditional Requests

We will now discuss the conditional request that adds some further rules to our request syntax. We
already mentioned that a conditonal request is composed of an event service definition and an action
list4. We define:

request ::= [event definition] ’:’ action list
event definition ::= service name ’(’ parameters ’)’

With conditional requests the protocol between tools and monitoring system is more complicated. The
tool gets a reply whenever an event matching the specification occurs and the action list was performed.
However, when the tool gets the replies, how can it identify them? A further question is: how does
the tool know whether or not the event detection was successfully installed for this request? An answer
that solves these two problems is to send a first reply to the tool when the request is analyzed. This
reply carries information on the instantiation of the corresponding event detection as well as a token that
identifies the request. When the event finally is triggered the corresponding request is identified by the
callback function invoked and its actual result parameters.

Conditional requests can be enabled and disabled. By definition, a conditional request is initially disabled,
i.e. there must be an explicit request for activation.

For a useful semantics of the tools it is crucial that any object under investigation does not change its
state after an event has been detected and before all actions were performed (unless — of course —
actions change that state by themselves). This is ensured by defining that the execution of an object
that triggered an event has to be suspended immediately after event recognition. It is resumed after the
completion of all actions in the list.

A detailed description of issues relevant to conditional requests is given in section 4.2.3.

3There are some more details concerning the final list of tokens that will only be introduced in later chapters.
4Thus, a request from a tool to the monitoring system is conditional or unconditional depending on the fact whether or

not an event service is specified.

cg-wp3.3-ocmg-devguide PUBLIC 12/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

3.2.3 Service Replies

Service replies are very complex by nature. In case of a successfull completion of an action list they carry
result values of all the individual actions of the list being performed on the specified objects. E.g. one
service of the action list might collect information of all processes on all nodes. The result of this action
is a list of object tokens together with the result values of the specific service issued. Another service of
the list might manipulate all processes on all nodes. As manipulations might be successful or erroneous
the service reply must also be able to transfer this information back to the tool.

Replies of the individual services of the action list are put together to one reply for the complete list
which finally is sent back to the tool. Obviously, the reply is hierarchically structured as many action
and objects will be referenced.

With conditonal requests we find two additional situations that have to be covered. The first one concerns
the requests by themselves: definition, enabling, disabling, and deletion result in a special reply sending
back to the tool information on the success of these functions. The second one refers to the occurence
of an event that matches an event definition. The reply must be assigned to the correct request issued
before. This is achieved via the callback function triggered and/or the parameters passed via this call.

Details on the reply data structure and its individual components are discussed in depth in section 4.3.

3.3 Examples

In the following two subsections we will present short examples that will show how the monitoring
interface supports different tools, namely a performance analysis system and a debugger. Although the
basic services and extension services will not be defined until later in this document, their semantics
should be intuitively clear in the examples. The primary goal is to give an impression of the interface’s
structure and expressiveness, rather than of its concrete services.

3.3.1 Performance Analysis of PVM Programs

Assume that a performance analysis tool wants to measure the time spent by task 4178 in the pvm send
call. In addition, the tool may want to know the total amount of data sent by this task, and it may want
to store a trace of all barrier events. Then it may send the following service requests to the monitoring
system:

No. request string result token

1 thread has started lib call([p 4178],”pvm send”) :
timer start([pa t 1])
counter add([pa c 2],$par5) c 1

2 thread has ended lib call([p 4178],”pvm send”) :
timer stop([pa t 1]) c 2

3 thread has started lib call([],”pvm barrier”) :
print([”pvm barrier entered”,$node,$proc,$time]) c 3

4 thread has ended lib call([],”pvm barrier”) :
print([”pvm barrier left”,$node,$proc,$time]) c 4

5 : csr enable([c 1,c 2,c 3,c 4])

The tokens c 1...c 4 are identifiers for the conditional service requests. They are delivered by the moni-
toring system as a direct reply to the request. The fifth request, which is unconditional, does not yield
such a token.

The event services used in this example are of special importance as they bridge the gap between the
universal monitoring interface and an interface adapted for the PVM programming model. These services

cg-wp3.3-ocmg-devguide PUBLIC 13/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

allow to monitor library calls of any programming library, in our example of the PVM package5. The
service thread has started lib call is matched by any event where an appropriate library call is started.
Accordingly, thread has ended lib call is matched by any completion of such a call.

Each event service is defined for objects on a certain level of abstraction (i.e. processes, messages etc.).
Tokens are automatically adapted to the appropriate level of abstraction by two mechanisms called
expansion and localization. For details on token hierarchies please see section 4.2.2.1.

With the conditional service request c 1 we wait for the start of pvm send calls. In this case, we activate
timer 1 for time measurement and increment counter 2 by the number of bytes to be transferred with
this call (value of parameter $par5). When the send call completes, we stop timer 1.

Whenever a PVM barrier is entered or left, conditional services 3 and 4 transfer relevant information
directly to the tool, which may for example write them to a trace file.

The example also shows the usage of the event context parameters: the variables $par5, $node, $thread,
and $time will get concrete values before the actions they belong to are started. These values are output
values of the event services triggered.

While the events used in the example are basic services defined by this document, all the actions (with
the exception of csr enable and print) come from a distributed tool extension. Thus the performance
analyzer can use its own semantics for integrators and counters.

3.3.2 Debugging of MPI Programs

The following example shows how the basic service requests defined by this document can be used during
debugging. Assume that the debugger wants to be notified whenever process p 1123 starts sending a
message, or whenever process p 1234 reaches instruction address 0xfe08, and that it wants to know the
process identifier, the procedure stack, and the contents of all general purpose registers. This can be
achieved by using a user defined event:

No request string result token

1 : user event create() e 1
2 thread has started lib call([p 1123],”MPI Send”) :

user event raise([e 1],[],0) c 1
3 thread reached addr([p 1234],0xfe08) :

user event raise([e 1],[],0) c 2
4 user event has been raised([e 1]) :

print([$proc])
thread get backtrace([$proc],0)
thread read int regs([$proc],0,32) c 3

5 : csr enable([c 3]) ; csr enable([c 1,c 2])

At first we define a new user event which subsequently can be used for both triggering a synthetic event
and detecting the very same synthetic event. The definition yields a token for this user defined event by
which it can be referenced in the next requests.

The second request raises this event whenever an MPI send operation is performed. Similarly, request
number three defines the same event to be raised on the condition of reaching a certain address with
a thread object. Both requests act as a kind of logical OR operator for event: whenever sending is
performed or a certain address is reached a user defined event will be raised.

Request 4 defines what has to be done in this case: we want to get the process identifier of the triggering
object and its node identifier, get its procedure stack, and read its register values.

5Note: This can not be achieved without modification of the PVM library. However, we expect to have this modifications
handled automatically either at link-time or during run-time.

cg-wp3.3-ocmg-devguide PUBLIC 14/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Up to now all conditional requests are disabled. At first we enable the handling of our user defined event
by activating c 3. The possible invokation of this event is activated by enabling c 1 und c 2. Now the
complete request sequence is active and triggers identical actions by different events.

After the actions have been executed, the process continues execution. To stop the process with the
occurrence of the event, simply add thread stop($proc) to the action list of request 4.

3.4 Interface Procedures

We will now give a first short introduction into the concepts of interface procedures that are used between
the tools and the monitoring system. An exact description of this topic will follow in section 4.1.

Essentially, OMIS defines one function to handle the cooperation between tools and the monitoring
system. This function is called omis request and has the following ANSI-C prototype when provided
for a C language binding:

Omis_reply omis_request(char * request,

void (* callback)(Omis_reply reply, void * param),

void * param,

Omis_flags flags);

The function is used to issue both unconditonal and conditional requests. Its behavior in terms of blocking
or non-blocking is defined by its parameter values and may be tuned to fit various situations.

The function definition involves four basic concepts:

1. The request sent to the monitoring system is always represented by a character string.

2. A call-back function provides means for the monitoring system to transfer result data back to the
tool. This is essential for conditional requests which result in any number of replies. The call-back
function is activated whenever a reply from the monitoring system has to be transferred.

3. Flags define behavioral variants of the omis request function. Most important they allow to e.g.
suppress simple ok-replies or wait for for acknowledgement of proper event activation.

4. A reply parameter is used whenever we get direct results as opposed to indirect results via the
call-back function. This reply parameter might e.g. denote reply data from unconditional requests.
Any reply sent by the monitoring system occupies memory in the address space of the tool. It can
be freed via the omis reply free function.

For centralized tools, for which the omis request function will be realized by some kind of remote
procedure call mechanism, we need several additional functions. Their main purpose is to initialize
a connection with the monitoring system and to wait for replies to be received. Details are given in
section 4.1.

3.5 The Tools’ Scope

A very important question is the scope that every tool has, i.e. the objects it can observe and manipulate.
If we were faced with static systems only, i.e. single user single application environments with only one
tool, the situation would be simple: the tool’s scope would just be all objects of the running system.
However, OMIS wants to provide means to handle dynamic systems where the number of objects varies
during time. New execution objects may be created or old ones may no longer exist. Likewise nodes may
be added to the environment or be deleted from it. Also, several tools might co-exist in a tool environment

cg-wp3.3-ocmg-devguide PUBLIC 15/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

and have to be managed independently by the monitoring system. Finally, OMIS based tools should be
multi application capable, i.e. they should support a tool’s access to more than one currently running
application program.

The main concept of OMIS is that every tool at every moment has a well defined scope, i.e. can observe
and manipulate a specific set of objects. The scope of different tools may be different. They may handle
object sets that are not identical.

Concerning the ability to monitor concrete objects we define the following rules:

• After the start of a tool and its successful initialization of the cooperation with the monitoring
system (via omis init()) the tool has not yet an access to individual objects.

• In order to control nodes and processes the tool has to explicitly attach to every individual object.
Only after an attach operation the tool can monitor the object.

• Transient objects like threads and messages can be monitored if the tools is attached to the corre-
sponding ’container’ object (i.e. a process, a message queue). No attach operation is necessary as
this would be in conflict with the objects’ short life time.

• New instances of nodes and processes are not monitored automatically. Instead, the tool has to issue
a conditional service request to get informed whenever new objects of these types are instantiated.
If it wants to monitor these objects it explicitly has to attach to them.

Above rules fix a tool’s scope. We can see that the set of objects to be monitored in the target system
is well defined. Every tool sees only what it wants to see.

Whenever two or more tools monitor the same object the monitoring system has to ensure to properly
distinguish these tools. Imagine that two tools measure the CPU time of a process. If one of them is no
longer interested in that value and disables the measurement, the monitoring system has to guarantee
that it will remain activated for the second tool. On the other hand, as long as there are two or more
identical measurements defined, the monitoring system should be able to recognize this fact and to keep
the additional overhead by this multiple definition as low as possible.

The varying set of objects produces some logical problems for conditional service requests especially in
cases where we use object tokens like “all nodes” or “all processes” in event and action definitions. We
have to fix a semantics how to handle the situation where the object set changes during an event definition
and the corresponding action list activation. These problems will be discussed in detail in section 5.1.3
and 5.1.2.

3.6 Remarks

There are some general remarks about the monitoring interface that should be mentioned here:

• In principle, the interface is asynchronous. This means that with the omis request procedure
there is no guarantee that you will receive replies in the same order in which you have sent the
requests. The behavior of the interface might be blocking or non-blocking depending on the actual
parameters. This will be discussed in detail in the next chapter.

• Parameters of services must be either constants, or (in case of an action in conditional requests)
event context parameters (i.e. $node, $time, etc.). They cannot themselves be actions or events.
Thus no recursion is possible with service requests.

• Only one event is allowed in a service request. Combinations of events can be implemented by
means of user defined events, the disable and enable services described in Section 5.2.1.1, and
distributed tool extensions.

cg-wp3.3-ocmg-devguide PUBLIC 16/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

The debugging example already demonstrated how to combine two events in order to have a logical
OR operation between them. Likewise it is possible to realize a “happened after” relation. Let us
reconsider the debugging example. Now, we would like to have the action list executed when first
process p 1123 started sending and afterwards process p 1234 reaches instruction address 0xfe08.

No request string result token

1 thread reached addr([p 1234],0xfe08) :
print([$proc])
thread get backtrace([$proc],0)
thread read int regs([$proc],0,32) c 1

2 thread has started lib call([p 1123],”MPI Send”) :
csr enable([c 1]) c 2

3 : csr enable([c 2])

The difference now is that conditional service request does not trigger a user event. Instead it
enables c 1. By that we have successfully specified a “happened after” relation.

Other combinations (e.g. an and operator) can be realized in a distributed tool extension as a
service that triggers a user-defined event when the proper conditions are fulfilled.

• The interface offers no direct way of passing the result parameters of one action to the input
parameters of another action. If you need this, you have to code a new service in a distributed tool
extension library that calls the actions and passes the parameters between them.

cg-wp3.3-ocmg-devguide PUBLIC 17/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

4 General Description

4.1 Interface Procedures

OMIS defines six procedures to access the monitoring interface:

1. omis request: Sends a service request to the monitoring system.

2. omis reply free: Frees the memory occupied by a reply structure.

3. omis init: Initializes the connection to the monitoring system.

4. omis finalize: Shuts down the connection to the monitoring system.

5. omis fds: Auxiliary function: returns the file descriptors to wait at for incoming messages.

6. omis handler: Auxiliary function: polls for incoming

The first two functions are available for both centralized tools and for distributed tools, distributed tool
extensions, and monitor extensions. The other ones are only usable for centralized tools or distributed
tools that are implemented as processes separate from the monitoring system, since only these tools have
to set up a communication connection to the monitoring system.

The following paragraphs specify the C language version of these procedures. Other language bindings
may be specified when needed. The rest of this chapter and Chapters 5 to 9 specify in detail the requests
accepted by omis request and the resulting replies.

4.1.1 omis request

typedef unsigned int Omis_flags;

#define OMIS_WAIT_FOR_FIRST_REPLY 1 /* Even if a callback is specified, */

/* block until the first reply is */

/* received and return this reply */

/* as the function’s result, */

/* without calling the callback */

#define OMIS_DONT_RETURN_OK 2 /* Don’t call the callback for */

/* replies that only contain an OK */

/* status */

#define OMIS_DONT_RETURN_EN_DIS 4 /* Don’t call the callback for */

/* replies indicating that the */

/* request has been enabled or */

/* disabled, if the status is OK */

#define OMIS_BUFFER_REQUEST 8 /* This request may be buffered on */

/* the sender side. The next */

/* request without this flag will */

/* flush the buffer. */

#define OMIS_BUFFER_REPLIES 16 /* The replies for this request may */

/* be buffered locally on the sender */

/* side. The buffer will be flushed */

cg-wp3.3-ocmg-devguide PUBLIC 18/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

/* after an implementation dependent */

/* period of time */

#define OMIS_DEBUG 32 /* This flag can be used to switch */

/* on debugging output for this */

/* request. The kind of debugging */

/* output produced is */

/* implementation dependent */

Omis_reply omis_request(char * request,

void (* callback)(Omis_reply reply, void * param),

void * param,

Omis_flags flags);

This function provides a tool’s only access to the tool/monitor-interface. Basically, it accepts a service
request as a string in parameter request, sends it to the monitoring system and passes the reply back to
the calling program. Thus, if tool and monitoring system are implemented as different processes, a call
to omis request is actually a remote procedure call.

The detailed behaviour of omis request depends on the value of flags and whether or not callback is a
NULL pointer. If callback is NULL, the function sends the provided service request to the monitoring
system and blocks until the reply to this request is available. The reply structure is then passed back to
the caller as the function’s result. As only one reply can be passed back in this way, this mode of calling
omis request only makes sense for unconditional service requests.

If callback is not NULL, the behavior of omis request is determined by the bits set in flags. If flags is
zero, the provided service request is sent to the monitoring system and the function immediately returns
to its caller with a NULL result. Later, whenever a reply for this request is sent back by the monitoring
system, the specified call-back function is invoked, getting the reply structure and the value of param
as its parameters.

Setting the OMIS WAIT FOR FIRST REPLY flag in flags results in the function to block until
the first reply is received by the monitoring system and to return this reply as the function’s result.
Subsequent replies will be passed to the call-back function. This mode is useful for conditional service
requests, since the first reply indicates whether or not the event definition could be processed correctly,
while the other replies contain the results of the request’s action list.

If OMIS DONT RETURN OK is set in flags, the call-back function should not be invoked when a
reply only consists of status values indicating that the service has been executed correctly, but does not
provide any further information. When this flag is set, the monitoring system can drastically optimize
its internal communication, especially for conditional service requests where the action list only contains
manipulation services. However, an implementation is free to ignore this flag.

If OMIS DONT RETURN EN DIS is set in flags, the call-back function should not be invoked for
replies indicating that the service request has been enabled or disabled, except in those cases where an
error occured. This flag only has an effect if request is a conditional service request. If the tool needs
not be notified on the enabling and disabling of the request sent, setting this flag can decrease the amount
of communication between monitoring system and tool.

The remaining flags control whether buffering of requests and replies is allowed. If the flag OMIS BUFFER REQUEST
is set, the request may be buffered until omis request is called with this flag being reset. This allows an
implementation to transfer several service requests to the monitoring system in a single communication
step. If OMIS BUFFER REPLIES is set, replies may be buffered by the monitoring system. An
implementation must ensure that the buffers are flushed within an adaquate interval of time. Both flags
may be ignored by an implementation.

Finally, a flag OMIS DEBUG is provided for debugging. Its intended purpose is to generate debugging
output for that sepcific request. However, whether or not such output will be produced, and which infor-
mation will be presented depends on the specific implementation of the monitoring system. Debugging

cg-wp3.3-ocmg-devguide PUBLIC 19/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

output will be passed to the error handler (see omis init below) in a reply structure with a status field
equal to OMIS OK.

The exact data structure of Omis reply and the syntax of the request strings are specified in separate
sections throughout the rest of this document part.

4.1.2 omis reply free

void omis_reply_free(Omis_reply reply)

This function returns the memory occupied by reply to the system. It is safe to pass a NULL pointer
to this function.

4.1.3 omis init

Omis_status omis_init(int *argc, char ***argv,

void (* error_handler)(Omis_reply reply),

int *tool_id)

omis init establishes a connection between a tool process and the monitoring system. Its parameters are
pointers to the tool’s argument count (argc) and argument vector (argv), a pointer to a handler function
for asynchronous errors (error handler), and pointer to an integer identifier used for tools consisting of
more than one process (tool id). The result is an error code as defined in Section 4.3.1.

The parameters argc and argv are used to pass the tools command line options to omis init. The
function will then extract all options from argv that are needed for correctly starting the distributed
monitoring system. The arguments used will be removed from the argument vector pointed to by argv,
*argc will be adjusted correspondingly. Since the start-up of the monitoring system heavily depends on
the target platform, and there is currently no standardized way to perform a connection between parts
of a distributed application, we follow the approach taken by the MPI forum and do not standardize the
startup procedure. This means that whether or not omis init starts the monitoring system (if it is not
already running) and the specific meaning of the arguments in argv will be implementation dependent.
The only requirement is that after a successful completion of omis init, the tool can issue service requests
to the tool/monitor-interface using omis request. omis init only establishes the connection to the
monitoring system, it does not attach the montoring system to any node or process.

If non-NULL, error handler specifies an error handling function, which will be invoked when some error
occurs that is not correlated with a specific request (request specific errors are reported in the request’s
reply). The handler will receive a reply structure with only one Omis service result element containing
an error code and a description (see Section 4.3 for details on reply structures). The handler will also
receive debugging output, if the flag OMIS DEBUG is set for a request (see omis request above).
Debugging output is indicated in the reply structure by a status field equal to OMIS OK.

The last argument, tool id is an in-out parameter that is only necessary for distributed tools implemented
as a set of processes separate from the monitoring system. In this case, one of these processes has to play
the role of a master. It has to pass a pointer to a variable containing a 0 for tool id. After completion
of the omis init call, this variable contains a unique tool identifier. The master then has to pass this
identifier to all the slaves, which in turn call omis init with the supplied identifier. In this way, the
monioring system knows that the processes form a single tool rather than different ones. Note however,
that the ability for different tools to attach to the monitoring system at the same time is not required by
this specification. A centralized tool can simply pass a NULL pointer to tool id.

Typically, the main function of a centralized tool will pass pointers to its argument count and argument
vector and an error handler to omis init:

cg-wp3.3-ocmg-devguide PUBLIC 20/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

main(int argc, char **argv)

{

if (omis_init(&argc, &argv, err_handler, NULL) != OMIS_OK) {

<< Error handling >>

}

...

}

The startup of a distributed tool implemented as separate processes will look like this:

master process: slave processes:

main(int argc, char **argv) main(int argc, char **argv)

{ {

int id = 0; int id;

if (omis_init(&argc,&argv, << receive id from master >>

err_handler,&id) if (omis_init(&argc,&argv,

!= OMIS_OK) { err_handler,&id)

<< Error handling >> != OMIS_OK) {

} << Error handling >>

<< send id to slaves >> }

... ...

} }

4.1.4 omis finalize

Omis_status omis_finalize()

This function must be called by any tool before it exits in order to shut down the connection between
the tool and the monitoring system in a well defined way. When omis finalize is called, the monitoring
systems deletes all conditional service requests defined by that tool. It also detaches from all objects to
which it has been attached by that tool.

Whether or not omis finalize also terminates the monitoring system and/or the monitored application
depends on the specific implementation, but should be controllable by the arguments passed to omis init.

4.1.5 omis fds

int *omis_fds(int *num)

omis fds returns an array of file descriptors that can be used to block a tool process until a message
from the monitoring system arrives, e.g. by passing the file descriptors to a select system call. When a
message arrives on one of the file descriptors, omis handler has to be called to handle that message.

If the function cannot execute correctly, it returns NULL, and the result returned in *num is undefined.
Otherwise, it returns a dynamically allocated array of file descriptors which should be freed after usage.
In this case, *num returns the number of entries in the array.

A rationale and an example for this function is given in the next subsection.

Note that on non-UNIX systems the return type of this function may vary.

cg-wp3.3-ocmg-devguide PUBLIC 21/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

4.1.6 omis handler

void omis_handler()

omis handler polls the communication channel to the monitoring system for incoming messages and
handles them properly. Although in an ideal world, this function (and also omis fds) should not be visible
at the interface, it is nevertheless necessary, since tools usually provide their own main loop waiting for
input events and handling them. The message handling, including the invocation of call-back functions
must somehow be included into this main loop, if the tool uses call-back functions for omis request. If
the tool always uses NULL for the callback argument of omis request, there is no need to ever use
omis fds or omis handler.

The following two examples show the proper use of omis fds and omis handler. The first example
considers a simple command line oriented tool:

#include <sys/types.h>

#include <sys/select.h>

#include "omis.h"

int main(int argc, char **argv)

{

fd_set fds;

int *mon_fds;

int num_fds;

int i;

char input_buf[80];

/* Initialize connection to monitoring system */

omis_init(&argc, &argv);

/* Get OMIS file descriptors */

mon_fds = omis_fds(&num_fds);

do {

/* Build file descriptor set containing the OMIS file

descriptor and the stdin file descriptor */

FD_ZERO(&fds);

for (i=0; i<num_fds; i++)

FD_SET(mon_fds[i],&fds);

FD_SET(0,&fds);

/* Block until there is some input */

select(FD_SETSIZE, &fds, NULL, NULL, NULL);

/* Read from stdin, if there is something to read */

if (FD_ISSET(0,&fds)) {

scanf("%s",input_buf);

/* decode input_buf and execute commands */

...

}

/* Handle OMIS messages */

omis_handler();

cg-wp3.3-ocmg-devguide PUBLIC 22/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

} while (strcmp(input_buf,"quit"));

free(mon_fds);

omis_finalize(); /* shut down connection */

}

The select system call and the if statement in this example ensure that OMIS messages can be handled
whenever they arrive, since they prevent the tool process from blocking in the scanf function. Such a
blocking would mean that replies cannot be passed to call-back functions until the blocking is released,
which may cause a problem to the tool.

The next example shows how a tool based on X windows can use OMIS:

void cb(XtPointer closure, int *source, XtInputId *id)

{

omis_handler();

}

int main(int argc, char **argv)

{

int *mon_fds;

int num_fds;

int i;

XtAppContext app;

/* initialize X window stuff */

... = XtAppInitialize(&app, ..., &argc, &argv, ...);

omis_init(&argc, &argv); /* initialize mon. system */

/* Add OMIS file descriptors as an additional input source

to the X window main loop. */

mon_fds = omis_fds(&num_fds);

for (i=0; i<num_fds; i++) {

XtAppAddInput(app, mon_fds[i],

(XtPointer)XtInputReadMask,

(XtInputCallbackProc)cb, NULL);

}

free(mon_fds);

XtAppMainLoop(app); /* X window main loop */

}

Here, the OMIS file descriptor is passed as an additional input source to the X window system, that
will call the cb function when there is some input to process. Note that since XtAppMainLoop never
returns, some X window call-back function must invoke omis finalize before the tool exits.

4.2 Service Requests

4.2.1 String Syntax

A service request is a string that complies with the following syntax:

cg-wp3.3-ocmg-devguide PUBLIC 23/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

request ::= [event definition] ’:’ action list
event definition ::= service name ’(’ parameters ’)’
action list ::= unlocked al | locked al
locked al ::= ’{’ unlocked al ’}’
unlocked al ::= action | action [’;’] unlocked al
action ::= service name ’(’ parameters ’)’

service name ::= identifier
parameters ::= parameter list | ε
parameter list ::= parameter | parameter ’,’ parameter list
parameter ::= integer | floating | string | token | binary

| list | ev ctx param
ev ctx param ::= ’$’ identifier
token ::= identifier | identifier ’<’ index ’>’
index ::= identifier | ev ctx param
list ::= ’[’ parameters ’]’

The symbols integer, floating, string, and identifier represent integers, floating point numbers, quoted
strings, and identifiers. The syntax of these elements follows the syntax of the corresponding elements in
the C programming language.

The symbol token represents an abstract object identifier. binary is a binary data string consisting of
ASCII coded number (the data length), immediately followed by a ’#’ character, immediately followed
by the indicated number of Bytes in 8-Bit binary format.

list denotes an (untyped) list of entities; ev ctx param can be used in actions to refer to event context
parameters. There is a set of standard parameters specified in Section 4.2.4 and a set of event specific
parameters for each event service which is defined in Chapters 5 to 9.

The semantics of the different data types used in the request language is specified in Section 4.2.2. The
semantics of the input parameter list of a service depends on the concrete service and is specified in
Chapters 5 to 9.

4.2.2 Data Types

This section specifies the data types that values in OMIS request and reply strings may have. Note that
these are not data types of any programming language, and that the values of these data types only exist
in string form. They have already shortly been introduced in Section 4.2.1.

OMIS defines five primitive data types: integer, floating, string, binary, and token. The first three
types represent integer numbers, floating point numbers and quoted strings. Since the numbers only exist
as strings, there is no need to specify the precision; it may in principle be arbitrary. However, except for
a few target systems, integers will fit into 32 Bits and floating point numbers into a 64-Bit IEEE floating
point format.

The binary data type has been included to support tools such as visualizers that have to acquire very
large amounts of data, where a conversion into ASCII strings would cause an inacceptable performance
problem. A value of this data type consists of an ASCII coded number (the data length), immediately
followed by a ’#’ character, immediately followed by the indicated number of Bytes in 8-Bit binary
format. Since the binary data may contain NUL characters, you have to be careful when operating on
request or reply strings that contain binary data. Note, however, that only services that may optionally
be implemented in an OMIS compliant monitoring system use this data type.

The token data type is an abstract data type used to identify objects, e.g. processes, threads, or messages.
It is specified in more detail in the next subsection.

cg-wp3.3-ocmg-devguide PUBLIC 24/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Based on these primitive data types, OMIS defines one structured data type, the list. A list is an
ordered collection of elements, which may have different primitive data types. However, most lists are
homogeneous, i.e. contain only elements of a single primitive type.

4.2.2.1 The Token Data Type

The token data type is used in OMIS to provide a platform independent way of addressing objects being
observed. Any object that can be observed or manipulated is represented by a token. OMIS defines nine
basic classes of objects:

1. sites

2. nodes

3. processes

4. threads

5. messages

6. message queues

7. user defined events

8. conditional service requests

Objects belonging to the first six classes (system objects) have a natural hierarchy, which is, however, not
based on inheritance, but on the relation ’contains’. This hierarchy is shown in Fig. 4.1. Note that the
relation between message queues and processes or threads depends on the target system, i.e. on whether
the threads in a process have individual message queues or share a single queue. There may also be
platforms, where message queues are first class objects (e.g. mailboxes). In this case, message queues are
only related to nodes.

Expansion

Localization

node

thread

process

*
*

message queue

message

*

Legend

Hierarchy depends*
on target platform

site

Figure 4.1: Object hierarchy in OMIS

According to this hierarchy, tokens and lists of tokens are implicitly converted to the token class a service
works on. There are two types of conversions: localization and expansion. Localization converts a token
a of class A into a token b of class B, where B is on an upper level in the hierarchy than A. This means
that b refers to an object that contains the object addressed by a. Expansion converts a token a of class
A into a set of tokens b of class B, where B is on a lower level than A in the hierarchy. This set contains

cg-wp3.3-ocmg-devguide PUBLIC 25/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

the tokens of all objects of class B contained in the object referred to by a to which the monitoring
system is attached. Since expansion may result in a token being replaced by several new tokens, it is only
performed for tokens contained in a list. Empty token lists are used as a universal object: if converted
to a list of tokens of class B, an empty list is expanded to the set of tokens of all objects of class B to
which the monitoring system is attached.

Since objects may be created and deleted dynamically, the point in time when the conversion is performed
has an influence on the result. The following constraints are defined by OMIS:

1. Conversions required by action lists must be performed each time the action list is executed. For
the action lists of conditional requests this means that conversion is not performed when the request
is defined, but when the monitoring system has detected the occurrence of an event matching the
request’s event definition and executes the action list.

2. From a logical point of view, conversions required by the arguments of the event definition part of a
conditional service request are performed each time the monitoring system detects the occurrence
of some event and matches it againes the request’s event definition1.

3. All conversions done for the same execution of a request (including the event definition) must be
consistent. So in the following example

node_get_info([],1) proc_get_info([],1)

if a new process on a new node is added to the monitored system between the execution of the
two services, proc get info must not return information on that process, since otherwise the two
conversions of the empty token list would be inconsistent. If, however, a new process on an already
attached node is added, the expansion of the second token list may include that process.

This could be achieved by performing all conversions in an atomic way at the beginning of the
action list’s execution, but can also be realized by a more efficient caching strategy: A conversion
between two adjacent object classes in Fig. 4.1 is performed when it is needed for the first time.
The result is then reused each time the same conversion step is required again.

Note that if an object terminates during the execution of an action list, there is a chance for a
service to receive a token of a nonexistent object. However, due to the chosen method of error
handling (see Section 4.2.3.3) this does not induce a problem, since the service will only fail for
that particular object.

The token data type is an abstract data type, so tools should not make any assumption on the structure
and the contents of the token string. In particular, tools should not assume that the tokens are identical
to the identifiers used within the parallel programming library. The only structural detail specified by
OMIS is the encoding of the token class which is as follows: The class of a token is encoded in a prefix
terminated by an underscore (’ ’). The followig prefixes are defined:

sites: ’s ’
nodes: ’n ’
processes: ’p ’
threads: ’t ’
message queues: ’q ’
messages: ’m ’
user defined events: ’e ’
conditional service requests: ’c ’
undefined token: ’u ’

1In an implementation, however, this matching and the conversion need not be performed explicitly, but can be achieved
by a proper instrumentation of the monitored application.

cg-wp3.3-ocmg-devguide PUBLIC 26/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Extensions may define additional token classes. These tokens start with the prefix of the extension,
followed by an underscore, a one-character token class specifier and another underscore. For example, a
group token as defined in the PVM extension starts with ’pvm g ’.

4.2.3 Semantics of Requests

In contrast to other monitoring interfaces, OMIS allows a service to be invoked on an object regardless
of the state of that object. This means that e.g. the registers of a thread can be read without having
to explicitly stop the thread in advance. On some target platforms, however, invoking a service on a
running thread may include a temporary suspension of that thread, so explicitly suspending the thread
may increase the performance when a larger number of services is requested.

The following subsections provide more details on the execution semantics of unconditional and condi-
tional service requests.

4.2.3.1 Unconditional Requests

Each service contained in an action list will be executed on all the objects passed to the service as a token
or token list, after proper conversion of the token(s). Since OMIS is used in a distributed environment,
the executions of an action list’s services on the different objects cannot be ordered totally, i.e. some of
these executions may be concurrent or unordered. The following conditions hold for all action lists:

1. If a1 and a2 are services operating on lists of objects2 and l1 and l2 are already converted lists
of the proper token class, then the following ordering relation is required for each sequence a1(l1)
a2(l2) in an action list:

if o1 is an object in l1 and o2 an object in l2 and o1 and o2 are located on the same node, then
a1 is executed on o1 before a2 is executed on o2.

2. A semicolon (’;’) in an action list acts as a barrier, i.e. all actions left to the semicolon are completely
executed before the execution of any action right to the semicolon is started.

3. Services do not have delayed side effects. This means that when a service has been executed, all
the modifications it performs on the monitored system have been fully completed. This ensures, for
instance, that services following a thread suspend service will find the threads already suspended.

Tools should not assume any other ordering constraints to hold. Especially, a service may be executed
on the objects passed to it in a token list in an order different from that indicated by the order of tokens
in this list. Note that an object should not occur twice in a token list (which might also happen due
to token expansion, see Section 4.2.2.1). In this situation, it is undefined whether the service will be
executed once or twice for that object.

By default, action lists are interruptible, i.e. the execution of different action lists may be interleaved by
the monitoring system. This allows action lists triggered by different events or sent by different tools
to be executed concurrently in the parallel or distributed system. To enforce mutual exclusion of action
lists when necessary, OMIS defines a locking mechanism, which is activated by enclosing an action list in
braces (’{’ and ’}’). Locking an action list A ensures that on the subset of nodes that is touched by A
no other action list is active while A is executed.

2Services that operate only on single objects may be viewed as working on a one-element object list for the purpose of
this discussion

cg-wp3.3-ocmg-devguide PUBLIC 27/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

4.2.3.2 Conditional Requests

In contrast to unconditional service requests, the action list of a conditional request is not executed
immediately, but each time when the monitoring system detects an event matching the event definition
given in the request. The following items define the semantics of conditional requests:

1. When a conditional service request is passed to the monitoring system, it will immediately return
a reply indicating whether or not the request could be installed properly. This reply will contain
the token identifying the request.

2. Conditional service requests are disabled by default, i.e. they will be ignored by the monitoring
system until they are explicitly enabled using the csr enable service.

3. When a conditional request is deleted, or when it is enabled or disabled and the flag DONT RETURN EN DIS
is not set in OMIS request, the monitoring system will send a reply indicating this change of state.

4. When the monitoring system detects some event and the conditional request is enabled, the event
is matched against the event definition of the request. If the match succeeds, the following steps
are performed:

(a) The monitoring system takes measures to ensure that the object associated with the event
will not undergo relevant state changes between the detection of the event and the completion
of the action list execution. Usually, this is achieved by a temporary suspension of execution
objects, i.e. threads, which is released upon completion of all action lists associated with that
event. In order to permanently stop any threads, the action list must invoke the thread stop
service.

A detailed specification, which threads will be suspended during the execution of action lists
is given in the specification of event services for the different object classes.

(b) Information on the detected event is stored in the event context parameters, which are specified
in Section 4.2.4 and in the specifications of the individual event services.

(c) The request’s action list is executed as described in the previous subsection.

4.2.3.3 Error Handling

Since OMIS requests can result in a list of services being executed on a (possibly distributed) set of
objects, there is a chance that some of these executions fail, while others succeed. In principle, there are
three possible strategies to handle partial failure of a request:

1. The execution of a request is abandoned as soon as the first error is detected and a single error
code is returned. This is the most simple strategy. However, the severe disadvantage is that in the
case of an error, the system being observed is left in an unknown state.

2. Each request behaves as a transaction, i.e. it either is executed completely successfully or fails
without having modified the state of the system being observed. Although from the users’ point
of view this is the most desirable strategy, its implementation would result in an overhead making
the monitoring system useless.

3. Therefore, OMIS uses a mixed approach: when an error is detected while executing a single service
on a single object, an error code and an error description is appended to the reply. Execution of
this service on this object is then abandoned, trying to undo all manipulations that may already
have been done to the object. If undoing is not possible in some cases, this must be indicated
by setting a special bit (OMIS FATAL) in the error code. The execution of the request is then
continued. This means that a single service on a single object should behave as a transaction,
whenever possible.

cg-wp3.3-ocmg-devguide PUBLIC 28/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

The used strategy avoids the overhead of global transactions, while ensuring that a tool issuing a request
can always infere which modifications to the system’s state have been performed and which have not
(except in the case of fatal errors).

4.2.4 Event Context Parameters

The following list specifies the general event context parameters, i.e. parameters that are set on occurrence
of any event. They may be used to pass information on the event to the action list of a conditional service
request. In addition to the parameters defined below, individual event services may provide also other
parameters, which are defined in the description of the event service.

token node; Contains the token of the node where the event took place.

token proc; The token of the process where the event took place. If the event cannot be attributed to
a process, proc contains an undefined token.

token thread; The token of the thread where the event took place. If the event cannot be attributed
to a thread, thread contains an undefined token.

floating time; This parameter contains a wall-clock time stamp indicating when the event has happened.
An exact comparison between time stamps is only possible for events that occured on the same
node, however, two successive events may have equal time stamps due to the limited clock resolution.
Clocks on different nodes are at least to be synchronized at start-up-time up to a precision in the
order of the message transfer time between nodes. The time stamps do not represent absolute time,
i.e. the absolute time for which the time stamp is zero is not specified. The unit of the time stamp
is seconds; the resolution of time stamps is platform dependent.

token csr; This parameter contains a token providing a self-reference to the conditional service request.
It can be used to manipulate the service request from within its action list (e.g. to delete the request
after it has been executed).

4.3 Service Replies

4.3.1 Reply Structure

The reply returned by omis request (either as a function result of by passing it to the callback function)
is a data structure conforming to the following C type declaration:

/*

** Status values

*/

typedef int Omis_status;

#define OMIS_OK 0 /* no error */

#define OMIS_CSR_DEFINED 2 /* cond. request has been defined */

#define OMIS_CSR_ENABLED 4 /* cond. request has been enabled */

#define OMIS_CSR_DISABLED 6 /* cond. request has been disabled */

#define OMIS_CSR_DELETED 8 /* cond. request has been deleted */

#define OMIS_CSR_TRIGGERED 10 /* cond. request has been triggered */

#define OMIS_FIRST_ERROR 16 /* lowest status code for error */

cg-wp3.3-ocmg-devguide PUBLIC 29/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

#define OMIS_SYNTAX_ERROR 16 /* syntax error in request string */

#define OMIS_UNKNOWN_SERVICE 18 /* service name is unknown */

#define OMIS_UNSUPPORTED_SERVICE 20 /* service is not supported */

#define OMIS_UNKNOWN_ECP 22 /* event context par. is unknown */

#define OMIS_UNKNOWN_OBJECT 24 /* object is unknown/not existent */

#define OMIS_TYPE_MISMATCH 26 /* type mismatch in parameters */

#define OMIS_PARAMETER_ERROR 28 /* illegal parameter value */

#define OMIS_OS_ERROR 30 /* error from operating system */

#define OMIS_NO_PERMISSION 32 /* operation not permitted */

#define OMIS_NO_MEMORY 34 /* out of memory */

#define OMIS_INTERNAL_ERROR 36 /* internal error in mon. sys. */

#define OMIS_UNSPECIFIED_ERROR 1000 /* generic error code */

#define OMIS_FATAL 1 /* object state modified */

/*

** Result for a single object or identical results for a set of objects

*/

typedef struct {

char *obj_list; /* List of objects where result belong to */

Omis_status status; /* Status for this set of objects */

char *result; /* Result for this set of objects */

} Omis_object_result;

/*

** Result of a single service

*/

typedef Omis_object_result *Omis_service_result;

/*

** Full reply of a service request

*/

typedef Omis_service_result *Omis_reply;

The reply is of type Omis reply, which is a pointer to a NULL-terminated array, whose element type
is Omis service result. The first element (with index 0) of this array is a reply for the request as a
whole where the request is regarded as a passive object. This element is used for the following purposes:

1. It returns errors that occur during any steps needed to prepare the execution of the request’s action
list. This includes any syntactical and semantical checks done when the request is defined.

2. For conditional requests, it contains the conditional request token needed for the services manipu-
lating the request.

3. It indicates any change in state of conditional service requests.

The other elements of a reply contain the results of those parts of the request that have been executed.
The element with index 1 points to the results of the first action in the request’s action list, element 2 to
the results of the second one (if any) and so on.

There are three different types of replies, that can be distinguished by the status field of the Omis object result
structure pointed to by the reply’s first element.

cg-wp3.3-ocmg-devguide PUBLIC 30/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

1. If the status field contains a value above or equal to OMIS FIRST ERROR, an error has been
detected during checks made prior to the request’s execution. In this case, the reply has only one
non-NULL element.

2. If the status field is equal to either OMIS CSR DEFINED, OMIS CSR ENABLED, OMIS CSR DISABLED
or OMIS CSR DELETED, the reply contains the results of the definition, enabling, disabling
or deletion of a conditional service request. In this case, the reply has a second element that con-
tains the status message generated by the event service. For OMIS CSR DEFINED, the result
element of the first Omis object result structure will contain the conditional request’s token.
However, if the event service failed and the conditional request therefore has not been stored by
the monitoring system, the result element will be NULL.

Note that OMIS CSR ENABLED and OMIS CSR DISABLED will be generated both when
the request is explicitly enabled or disabled, and when the set of actually monitored objects changes
by attaching to or detaching from objects.

3. If the status is OMIS OK or OMIS CSR TRIGGERED, the following elements of the reply
contain the results of the execution of all actions in the action list of the unconditional or conditional
request.

Since the results of actions may consist of several sub-results for different objects, the type Omis service result
is a pointer to an array of Omis object result structures. The end of this array is marked by an entry
with obj list == NULL; the other fields of this end marker don’t have any meaning. The principal
semantics of the Omis object result structures is:

• obj list points to a string containig a comma-separated list of object tokens that specifies the
objects this part of the result belongs to.

• status is the status for the objects defined in obj list. If the bit OMIS FATAL is set in an error
status, the state of the objects in obj list has been changed in an inconsistent way due to the
error. If an error message is returned where the flag is not reset, the objects’ states have not been
changed by the failing service.

• result points to a string containing the (identical) result of an action’s execution for the objects
in obj list, if status doesn’t indicate an error. Otherwise, result points to a string containing a
more detailed error description that may be presented to the user. If there is no result or error
description, result may be NULL.

If the reply does not belong to a service operating on objects (as it is the case for element 0 of the
Omis reply array), obj list must point to an empty string and the rest of the above description holds
analogously. For the other cases, Omis object result allows to unify identical results for different
objects in order to save memory and communication time. This is important especially for the status
replies which are usually the same for all objects. Having one status field for each single object a
service worked on would result in a huge overhead. However each implementation of an OMIS compliant
monitoring system is free to decide whether or not this unification is done. Since OMIS uses a hierarchical
approach to identify objects, the obj lists may in principle contain objects of different granularity. For
instance, if a service is invoked for all threads in the observed system by specifying an empty token list
as its parameter, and the result is the same for each thread, there are several possibilities for the result
structure:

• Only a single entry with obj list pointing to an empty string.

• Several entries with obj list pointing to a single node token.

• Only a single entry with obj list being the list of tokens of all threads in the observed system.

cg-wp3.3-ocmg-devguide PUBLIC 31/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

• ...

In order to not overly complicate the tools using OMIS, the scheme is restricted according to the following
description:

1. In Omis object result structures returning a real result (i.e. those having status == OMIS OK
and either belong to an information service or a manipulation service with a non-void return type),
obj list must point to a non-empty list of tokens of the type the service works on. This ensures
that any information returned is always accompanied with an explicit list of the objects it refers to.

2. In a reply generated when a conditional request is triggered successfully, the first structure Omis object result
in the result has status == OMIS TRIGGERED, and obj list points to a one-element list
defining the object where the event occured.

3. In all other cases, the obj lists may be a partial expansion of the object list given as an argument
of the service. Furthermore, the last Omis object result structure (prior to the end marker) may
have status == OMIS OK with obj list pointing to an empty string and result == NULL),
indicating that for all of the objects not mentioned in previous entries the service has been executed
successfully.

Note that except for case 3, objects specified explicitely in the parameter list of a service will never be
summarized by using tokens of containing objects in the obj list.

The exact syntax for the strings pointed to by obj list and result is specified in Chapter 4.2, the
semantics of the result strings depends on the service and is specified in Chapters 5 to 9.

4.3.2 String Syntax

The syntax of the strings pointed to by the obj list and result fields of an Omis object result strucure
(see Section 4.3.1) is as follows:

obj list ::= token list | ε
token list ::= token | token ’,’ token list
result ::= parameter list | error description

The symbol error description denotes an arbitrary character sequence, which can provide a detailed
description of an error situation.

4.3.3 Reply Examples

Fig. 4.2 to Fig. 4.4 illustrate different forms of replies. For the sake of clarity, the illustrations don’t show
pointers to strings. Instead, the strings are directly shown in the pointer fields in the representation used
in the C language.

First, consider an unconditional request of the form

: proc_get_info([], ...) thread_manipulate([], ...)

where proc get info is an information service for processes, while thread manipulate is a manipulation
service for threads. When no errors are encountered during the execution of this request, a possible reply
may look as those shown in Fig. 4.2. Note that the empty token list passed to proc get info must be
expanded in the reply, while the empty token list passed to thread manipulate need not. The reason
for this is the fact that the first service returns a real result, i.e. has a non-void return type, whereas
the latter one has a return type of void and therefore only returns a status value. Fig. 4.3 shows how a
reply may look like when errors occur.

Now, consider a conditional request:

cg-wp3.3-ocmg-devguide PUBLIC 32/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

NULLNULL

NULL

"p_1,p_2,p_3"
"p_4"

OMIS_OK

OMIS_OK

"10, 0.37"
"35, 1.326"

"10, 0.37"
"10, 0.37"OMIS_OK

OMIS_OK

NULL

"" OMIS_OK NULL

NULL

"" OMIS_OK NULL

NULL

"" OMIS_OK NULL

"35, 1.326"OMIS_OK

NULL

NULL

"p_1,p_2"
"p_3"

"p_4"

"t_123,t_23"
NULL

NULLOMIS_OK

OMIS_OK"p_3"

Figure 4.2: Two possible replies for an unconditional request without errors

""

""

NULL

OMIS_OS_ERROR

OMIS_OK

OMIS_OK

OMIS_OK

OMIS_PARAMETER_ERROR

OMIS_OK NULL

NULL

NULL

NULL

"p_1,p_3"

NULL

NULL

"10, 0.37"
"Exec format error"
"35, 1.326"

"p_2"
"p_4"

"t_324"

Figure 4.3: Reply for an unconditional request with errors

cg-wp3.3-ocmg-devguide PUBLIC 33/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

proc_has_done_something([], ...) : node_get_name([$node])

When this request is passed to the monitoring system, three different kinds of replies may be received as
shown in Fig. 4.4. The reply generated when the event is detected indicates the object (i.e. process in this
example) where the event occurred in the obj list component of the reply’s first Omis service result
structure.

When the tool now attaches to a new process, say p 32, a reply as shown in Fig. 4.5 will be generated,
except for the case when the OMIS DONT RETURN EN DIS flag has been set when defining the
above conditional request. If the preparations necessary to monitor the event in the new process fails,
this reply contains a corresponding status and an error message.

OMIS_OK

NULL

"donald""n_5"

a) reply for definition:

b) reply for enable (analogous for disable/delete):

NULL

"" OMIS_OK

NULL

""

NULL
NULL

NULL

"" OMIS_OK

NULL

"" OMIS_DEFINED "c_123"

NULL
NULL

OMIS_ENABLED NULL

OMIS_TRIGGERED NULL

NULL

NULL

c) reply when event has been detected:

"p_21"

Figure 4.4: Replies for a conditional request

4.4 Description Method for Services

Throughout the service descriptions in Chapters 5 to 9, we will use ANSI-C-like prototypes to define the
input parameters and the result strings, since this type of description is much more clear than presenting
a grammar or BNF for the syntax of the request and reply strings. In addition to the types integer,

cg-wp3.3-ocmg-devguide PUBLIC 34/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

NULL

OMIS_OK

NULL

""

NULL
NULL

OMIS_ENABLED NULL

"p_32"

Figure 4.5: Reply for a conditional request when new object is monitored

floating, and string, binary and token, we will use the type-identifier any which stands for any of these
types. To define more complex parameters, we will use typedef’s and/or C-struct’s3. Lists of values are
specified by the type name followed by a ’*’, denoting zero or more repetitions of that type. The resulting
string is then simply the linear layout of a value having the specified type. I.e. a struct corresponds to
several values separated by commas, while a list (indicated by ’*’) corresponds to several values of its
component type, that are again separated by commas, but are enclosed in brackets (’[’ and ’]’).

The return type given in the prototype specifies the result of the service for a single object, i.e. the
information contained in the result field of a single Omis object result structure in the service’s reply.

A simple example will clarify this: Assume the following definition of a synchronous service:

struct {

string name;

integer state;

integer priority;

floating cpu_time;

}

proc_get_info (token* proc_list, integer flags);

This says that proc get info has two input parameters, the first one is a (probably empty) list of tokens,
the second one is a single integer. For each object, i.e. process the service operates on, a string consisting
of four comma-separated elements is returned, where element 1 is a quoted string, elements 2 and 3 are
integers and elements 4 is a floating point number. Therefore, a correct request for this service could be:

proc_get_info([p_31,p_45,p_54], 5)

A valid reply could look as shown in Fig. 4.6.

A few synchronous services return results where some components are optional. In this case, the elements
are placed in square brackets in the type definition. An input parameter of the service then determines
which components will actually be present. The real proc get info service is of this type, i.e. the
definition of this service really looks more like:

struct {

[string name;] // present if bit 0 is set in flags

[integer state;] // present if bit 1 is set in flags

[integer priority;] // present if bit 2 is set in flags

[floating cpu_time;] // present if bit 3 is set in flags

}

proc_get_info (token* proc_list, integer flags);

3These constructs are only used in this document to define the structure of request and reply strings, they are not part
of the tool/monitor-interface itself.

cg-wp3.3-ocmg-devguide PUBLIC 35/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

NULL

NULL

OMIS_OK

OMIS_OK

OMIS_OK

"\"foo\",12,0,12.7"
"\"bar\",1,10,0.65"
"\"foo\",9,0,1.1e4"

NULL

"" OMIS_OK NULL

"p_31"
"p_45"
"p_54"

Figure 4.6: Reply example

This means that all components of proc get info are optional. The flags parameter is a bit-vector that
determines which of them will be present in the result. For example, the reply for the request

proc_get_info([p_31,p_45,p_54], 5)

could be (since bits 0 and 2 are set in flags) as in Fig. 4.7.

NULL

"" OMIS_OK NULL

NULL

"\"bar\",10"
"\"foo\",0"

NULL

OMIS_OK

OMIS_OK

"p_45"
"p_54,p_31"

Figure 4.7: Reply example

Notice that due to the filtering, the replies for the processes with tokens p 31 and p 54 are now the
same, so they have been unified to a single reply string. However, this behavior is not required, i.e. it is
also allowed that separate (identical) replies are generated.

Event services always have only a status value as their normal result, which is returned when a conditional
service is defined, enabled, disabled or deleted. However, event services also have an additional type of
results, namely the parameters that can be accessed by the actions when a matching event is detected.
To define the types of these results, we use a notation that looks like this:

void proc_has_done_something(token* proc_list, integer param)

--> struct {

integer first_result;

string second_result;

integer third_result;

}

The type of data returned as the normal result of the event service is given in the C-like prototype (it is al-
ways void since event services return only a status). The so called event context parameters, which contain
information on a detected event, are defined as a struct after the --> symbol. These event context param-
eters can be passed to the actions in the request’s action list by specifying $event context parameter name

cg-wp3.3-ocmg-devguide PUBLIC 36/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

as an input parameter for the action. Note that event context parameters are never defined as being
optional. However, an implementation may choose not to compute an event context parameter, if it is
not used in the action list.

cg-wp3.3-ocmg-devguide PUBLIC 37/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5 Specification of the Basic Services

In the following subsections we will present a list of all basic services currently defined by OMIS. As
you can see from the service descriptions, the goal of OMIS is to define a basis for building higher-level
monitoring systems. For instance, OMIS does not include the generation of event traces, but it provides
a very easy and powerful mechanism for the monitoring of events. So if you need some kind of event
trace, you only have to provide the functions for writing the events to a peripheral as a distributed tool
extension, but you don’t have to implement the event detection. Similar, OMIS services operate on the
machine level, i.e. they use addresses or pointers rather than symbolic names for referring to programming
objects. Thus, an OMIS compliant monitor is not forced to work with a symbol table generated during
compilation of the monitored application. But, of course, it is possible to add extensions that make use
of these symbol tables.

5.1 System Objects

System objects are those objects in the monitored system that do not belong to the monitor itself.
Currently, we distinguish between

• sites (Section 5.1.1),

• nodes (Section 5.1.2),

• processes (Section 5.1.3),

• threads (Section 5.1.4).

The following section specify the services for these classes of objects. In these sections we distinguish
between required services that have to be provided by any implementation and optional services which
need not be implemented by an OMIS compliant monitoring system. The services are marked with (R)
and (O), respectively. In addition, there are some services that are marked with a (P), denoting that
they are partially required, i.e. only some of the services functionality is required.

cg-wp3.3-ocmg-devguide PUBLIC 38/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5.1.1 Sites

Sites are introduced in the current version of OMIS to support georgraphically distributed systems which
are composed of computing clusters located at multiple sites, like e.g. in a Grid environment. A site
represents a collection of nodes, usually within a single administrative domain. E.g. in a typical Grid
system, a site would be a cluster of machines representing a single computational resource in the Grid.

Support for site objects is optional, i.e. an OMIS compliant monitoring system does not need to provide
them.

5.1.1.1 Manipulation Services

The manipulation services for site objects are for attaching or detaching sites to/from the scope of objects
to be monitored.

1. site attach . attach to a site. (O)

void

site_attach(token* site_list)

Calling this service results in the monitoring system attaching itself to the sites specified in site list.
The site token(s) required as an argument may be obtained from the output of information services
from some OMIS extensions supporting a specific target platform.

2. site detach . detach from a site. (O)

void

site_detach(token* site_list)

Calling this service results in the monitoring system detaching itself from the site(s) specified in
site list and in turn also from all nodes and processes located on these sites. Note, that conditional
requests defined for the detached objects will not be deleted automatically – the events simply will
no longer be detected. Any subsequent service request (other than site attach for a detached site
will result in an error.

5.1.1.2 Information Services

Currently, there is only a single service that returns static information on sites to which the monitoring
system is attached:

1. site get info . Return information on a site. (O)

typedef struct {

[string name;] // Name of this site. Usually, this is

// a host name representing the site.

// Present if Bit 0 is set in flags.

} Site_info;

Site_info

site_get_info(token* site_list, integer flags)

As with the other information services, the bit-vector flags defines which kind of information has
to be retrieved. By calling site get info([],0), the tokens for all sites currently observed by the
monitoring system (i.e. all attached sites) can be retrieved.

cg-wp3.3-ocmg-devguide PUBLIC 39/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5.1.2 Nodes

OMIS is intended to be usable for a wide range of hardware platforms. The coarse grain model of the
monitored hardware platform is a set of nodes interconnected by some network. However, a node need not
be a single processor. A node may also be a multiprocessor system. The criterion to draw the borderline
between processors and nodes is that for a user or a programmer nodes are distinguishable from each
other, while processors on the same node are not. In other words: nodes are those components of the
hardware platform that have a single system image. This implies that processors on the same node have
a (at least virtually) shared memory, but the reverse implication is not necessarily true.

5.1.2.1 Manipulation Services

The services in this section of course do not manipulate the hardware, but change the monitored hardware
system by adding or removing nodes to be monitored.

1. node attach . attach to a node. (O)

void

node_attach(token* node_list)

Calling this service results in the monitoring system attaching itself to the nodes specified in
node list. The node token(s) required as an argument may be obtained from the event context pa-
rameters of node has been added, from a service in an extension (e.g. pvm vm get nodelist),
or from some other OMIS based tool, using a communication mechanism outside the scope of OMIS.
Note that there is also a service node attach2 to attach to a node specified by its name.

This is the only service that may legally receive a token of an unattached node as its parameter. If
the node is already attached, the service does nothing.

2. node attach2 . attach to a new node. (O)

token

node_attach2(string node_name)

Calling this service results in the monitoring system attaching itself to a new node specified by its
name. The exact meaning of node name’s contents is platform dependent. Usually, the string
will either contain an internet address (for workstation clusters) or a node number (for parallel
computers). If the node is already attached, the service does nothing.

Note that since the service is a constructor in the sense of object oriented programming, it does
not operate on node tokens although it is a node service.

3. node detach . detach from a node. (O)

void

node_detach(token* node_list)

Calling this service results in the monitoring system detaching itself from the nodes specified in
node list and in turn also from all processes located on these nodes. Note, that conditional requests
defined for the detached objects will not be deleted automatically – the events simply will no longer
be detected. Any subsequent service request (other than node attach or node attach2) for a
detached node will result in an error.

cg-wp3.3-ocmg-devguide PUBLIC 40/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5.1.2.2 Information Services

Currently, there is only a single service that returns static and dynamic information on the nodes to
which the monitoring system is attached:

1. node get info . Return information on a node. (P)

typedef struct {

// Static node information

// These components are present if bit 0

// is set in flags:

//

[string name;] // Name of this node. Usually, this is the

// host name (R)

// These components are present if bit 1

// is set in flags:

//

[string os_name;] // Name of node’s operating system (R)

[string os_version;] // OS version (R)

[string os_release;] // OS release (R)

[string os_nodename;] // Host name of this node (R)

[integer os_boottime;] // OS boot time in seconds since Jan. 1st,

// 1970, 0:00 (O)

}

node_get_info(token* node_list, integer flags)

Detailed information on nodes is provided by the node get info service. As with the other in-
formation services, the bit-vector flags defines which kind of information has to be retrieved. By
calling node get info([],0), the tokens for all nodes currently observed by the monitoring system
can be retrieved.

For those components labelled as optional, an implementation should return the value -1 or an
empty string, if the information is not available on the specific target system.

cg-wp3.3-ocmg-devguide PUBLIC 41/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5.1.3 Processes

Since OMIS aims at defining a very general monitoring interface, it is based on a multithreaded execution
model. In this model, threads are the entities actually executing code, while processes only serve as a
container for threads. The term ’container’ indicates the twofold role of a process: It defines the execution
environment, e.g. the address space, for its threads, but it may also be viewed as an active component
defined by the union of all its threads. A process cannot exist alone; there is always at least one thread
in the process. So a process creation always implies also a thread creation. Threads executing in the
same process share a common address space.

This model is applicable to a wide range of platforms. Currently, three different types of platforms can
be distinguished:

1. Platforms without support for multithreading: On these systems, each process contains exactly one
thread. The token conversion rules defined in Section 4.2.2 allow process and thread tokens to be
used interchangeably, so a tool does not have to distinguish between threads and processes.

2. Multithreaded, multiprocess platforms: They exactly fit into the process model of OMIS.

3. Multithreaded platforms without the notion of a process: There are some platforms that only
support threads, but don’t provide virtual address spaces (e.g. the Parsytec computers running
the PARIX operating system). On these platforms, a process in the sense of OMIS is defined by
all threads created due to the invocation of a single executable program, and the memory areas
allocated for that program. The service proc get loader info has been provided especially for
these platforms.

5.1.3.1 Manipulation Services

The following services are provided to manipulate the behavior of processes.

1. proc attach . attach to a process. (O)

void

proc_attach(token* proc_list)

The proc attach service attaches the monitoring system to all processes specified in proc list.
This may also include attaching the monitoring system to new nodes. The process token(s) required
as an argument may be obtained from the event context parameters of proc has been created,
from a service in an extension (e.g. pvm vm get proclist), or from some other OMIS based tool,
using a communication mechanism outside the scope of OMIS. Note that there is also a service
proc attach3 to attach to a process specified by its local process identifier on a specific node.

This is the only service that may legally receive a token of an unattached process as its parameter.
If the process is already attached, the service does nothing.

Attaching to a process implies attaching to all existing and future threads of that process. The ra-
tionale for this behavior is as follows: Thread creation should be an extremely lightweight operation.
Forcing an explicit attach operation for each thread would result in an unacceptable overhead. In
addition, in virtually all multithreaded systems, a standard implementation of a monitoring system
will result in an automatic attachment to all threads in an attached process, so defining that new
threads are unattached by default would put a huge burden on OMIS implementations. Finally,
threads share a common execution environment, while processes do not, so it may be even more
natural to regard them as a unit for the purpose of monitoring, although the different handling of
processes and threads may seem to be inconsistent.

2. proc attach3 . attach to a process on a node. (O)

cg-wp3.3-ocmg-devguide PUBLIC 42/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

token

proc_attach3(token* node_list, integer pid, string exec)

The proc attach3 service attaches the monitoring system to the process given by its local identifier
pid on each node in node list. Note that for operating systems like UNIX specifying a node list
with more than one node may be not useful, nevertheless, a token list is used as a parameter for
conistency reasons.

exec specifies the path to the executable of the process to be attached. This information is needed
to access symbol tables or linker information of the process to be attached. When an empty string
is passed for exec, the monitoring system will try to determine the path by itself. Depending on
the concrete plattform, this may or may not be possible.

Like proc create, this service is a constructor in the sense of object oriented programming, so it
operates on node tokens although it is a process service.

3. proc detach . detach from a process. (O)

void

proc_detach(token* proc_list)

The proc detach service detaches the monitoring system from the processes specified in proc list
and all of its threads. When a process is detached, it is no longer included in the set of monitored
processes and the monitoring system removes any instrumentation, i.e. any modifications done
to the process in order to detect events. Note however, that conditional requests defined for the
detached processes will not be deleted automatically — the events simply will no longer be detected.
Any subsequent service request (other than proc attach or proc attach3) for a detached process
will result in an error.

4. proc write memory . write into the memory of a process. (R)

void

proc_write_memory(token* proc_list, integer addr,

integer blocklength, integer stride, integer* val)

Writes the contents of the integer list val into the memory of all processes defined by proc list.
val contains the raw data to be written, i.e. a list of Bytes; the monitoring system does not perform
any processing (e.g. byte swapping) of this data. The data will be written in contiguous blocks of
Byte-size blocklength, where the address of the first block is addr and stride is the separation
between the start of two subsequent blocks in Bytes. Thus, the first blocklength Bytes in val will
be written to addresses addr ... addr+blocklength−1, the next blocklength Bytes to addresses
addr+stride ... addr+stride+blocklength−1 and so on. stride must not be smaller than
blocklength.

5.1.3.2 Information Services

The following services can be used to obtain information on an application’s processes:

1. proc get info . get information on processes. (P)

typedef struct { // Static info. Independent of time.

//

// Required components:

//

[integer global_id;] // Global id of this process, as

cg-wp3.3-ocmg-devguide PUBLIC 43/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

// defined by the programming library

// used, e.g. the PVM task id

// present if bit 0 is set in flags

[string* argv;] // Argument vector,

// i.e. pathname and parameters

// present if bit 1 is set in flags

//

// Optional components:

//

[integer uid;] // ID of the user owning this process

// present if bit 2 is set in flags

[integer gid;] // ID of the group owning this process

// present if bit 3 is set in flags

} Proc_static_info;

typedef struct { // Dynamic info. Changes over time.

// All times are returned in seconds,

// all sizes in Bytes.

//

// Required components:

//

[token node;] // Token of the node where this

// process is located.

// Note that this may be dynamic due

// to process migration.

// present if bit 8 is set in flags

[integer local_id;] // Local id of this process,

// e.g. UNIX pid.

// Note that this may be dynamic due

// to process migration.

// present if bit 9 is set in flags

[integer scheduling_state;] // Current scheduling state:

// 0: running, 1: sleeping/blocked,

// 2: ready/runnable, 3: zombie,

// 4: stopped/suspended

// present if bit 10 is set in flags

[floating total_time;] // Sum of user and system time of the

// process since it started

// present if bit 11 is set in flags

//

// Optional components:

//

[integer priority;] // Current scheduling priority

// see proc_set_priority

// present if bit 12 is set in flags

[integer memory_size;] // Current process size

// present if bit 14 is set in flags

[integer resident_size;] // Amount of main memory currently used

// present if bit 15 is set in flags

} Proc_dynamic_info;

struct {

Proc_static_info statinfo;

Proc_dynamic_info dyninfo;

cg-wp3.3-ocmg-devguide PUBLIC 44/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

}

proc_get_info(integer* proc_list, integer flags)

Detailed information about a set of processes can be obtained by the proc get info service.
proc list defines the processes that have to be inspected. The second parameter flags is a bit
set that allows to mask each kind of information individually. E.g. if flags is equal to 514 (0x202),
the processes’ argv vector (i.e. name and command line parameters, bit 1) and their node local
identifiers (bit 9) will be returned. So it is possible to get all relevant process information with a
single service request, but still a monitoring system only needs to retrieve the information that is
really needed.

When specifying proc get info([],0), no further information about processes is returned. However,
the reply will contain a full expansion of the empty process list, i.e. will provide the tool with the
tokens of all monitored processes.

2. proc read memory . read the memory of a process. (R)

integer*

proc_read_memory(token* proc_list, integer addr,

integer blocklength, integer stride, integer count)

For each process in proc list, this service reads count contiguous memory blocks from the process’
memory and returns the contents as a list of bytes. The result is a raw memory image, i.e. a sequence
of Byte values; the monitoring system does not perform any processing (e.g. Byte swapping) of this
data. Each memory block read is of Byte-size blocklength, addr is the address of the first block,
and stride is the separation between the start of two subsequent blocks in Bytes. Thus, the first
blocklength Bytes of the result will be read from addresses addr ... addr+blocklength−1, the
next blocklength Bytes from addresses addr+stride ... addr+stride+blocklength−1 and so
on. stride must not be smaller than blocklength.

3. proc get loader info return the loader information of a process. (P)

typedef struct {

string path_name; // The (full) path name of that load module

string member_name; // Member name, if module is an archive

integer code_start; // Start address of code segment

integer code_len; // Length of code segment in Bytes

integer data_start; // Start address of data segment

integer data_len; // Length of data segment in Bytes

integer bss_start; // Start address of BSS segment

integer bss_len; // Length of BSS segment in Bytes

} Loader_info;

struct {

integer num_load_modules; // Number of load modules

Loader_info* loader_info; // loader info for each load module

}

proc_get_loader_info(token* proc_list)

On some parallel computers, e.g. the Parsytec GC/PowerPlus running PARIX, programs are relo-
cated when they are loaded by the operating system. Debuggers therefore need to know the start
addresses and the lengths of the program’s segments. The service proc get loader info returns
this information for each load module of a process contained in proc list. This service may also
be used with operating systems where code (e.g. libraries) can be loaded dynamically.

The first element in the loader info list will contain the information on the process’ main module
(i.e. the statically linked part of its executable). Any implementation must at least provide this part

cg-wp3.3-ocmg-devguide PUBLIC 45/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

of the information; additional list elements providing information on dynamically loaded libraries
are optional. If the target system does not relocate the code of a process (as it is the case with
UNIX), a result with all start addresses equal to zero and all lengths equal to the total address
space of the target system is permissible.

5.1.3.3 Event Services

The following services notify the caller on certain events related to the monitored processes. When one
of these events is detected, all threads in the process that generated the event are temporarily suspended
until all action lists associated with the event have been executed.

Note that only the service specific event context parameters are specified in this section. The common
event context parameters contain further information on the detected event, especially the tokens of the
node and process where the event occurred.

1. proc has terminated . A process has terminated. (R)

void

proc_has_terminated(token *proc_list)

--> void // no service specific event context parameters

Event proc has terminated is raised when a process in proc list has terminated. There is no
guarantee that the process is still accessible when the event is detected. However, implementations
should try to detect this event before the process becomes inaccessible, whenever possible.

2. proc has been stopped . A process has been stopped by the
monitoring system. (R)

void

proc_has_been_stopped(token *proc_list)

--> void // no service specific event context parameters

This event is raised when all threads of a process in proc list have been stopped by the monitoring
system (using the thread stop service).

3. proc has been continued A process has been continued by the
monitoring system. (R)

void

proc_has_been_continued(token* proc_list)

--> void // no service specific event context parameters

This event is raised when all threads of a process in proc list has been continued again by the
monitoring system (using the thread continue service).

cg-wp3.3-ocmg-devguide PUBLIC 46/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5.1.4 Threads

Threads are the only objects in the monitored system that actually execute code. See Section 5.1.3 for
a discussion of the relation between threads and processes.

5.1.4.1 Manipulation Services

The following services are provided to manipulate the behavior of threads. Note that there are no services
to attach to a thread, since threads are automatically attached. See proc attach for a rationale.

1. thread stop . stop a thread. (P)

void

thread_stop(token* thread_list)

This service stops all threads specified by thread list. This is achieved by putting each thread
into a stopped state, where it no longer gets any CPU cycles. From this state, the thread can only
be released with the thread continue service. The operation is idempotent, i.e. invoking it on an
already stopped thread will in no way change the thread’s state.

Every implementation of OMIS must provide the ability to stop all threads of a process. Stopping
individual threads of a process is an optional feature.

2. thread continue . continue a thread. (P)

void

thread_continue(token* thread_list)

This service removes all threads specified by thread list from the stopped state. The operation
is idempotent, i.e. invoking it on a thread that is not stopped will in no way change the thread’s
state. Note that the thread only starts executing again when there is no other reason preventing
its execution (e.g. it may still be suspended due to a call to thread suspend or because action
lists associated with an event that occured in this thread are executed).

Every implementation of OMIS must provide the ability to continue all threads of a process. Con-
tinuing individual threads of a process is an optional feature.

3. thread suspend . temporarily suspend a thread. (R)

void

thread_suspend(token* thread_list)

This service suspends all threads specified by thread list. Like thread stop, the threads are
put into a suspended state where they no longer get any CPU cycles. However, the suspended
state is logically different from the stopped state, i.e. a suspended thread cannot be resumed with
thread continue. Furthermore, thread suspend is not idempotent, i.e. there is a suspend count
which means that a thread suspended twice must also be resumed twice. Finally, when threads
are to be suspended, thread suspend may actually prevent an arbitrary superset of these threads
from executing, provided that the implementation guarantees that they will again get the CPU
when there is no longer any thread in the suspended state.

The rationale for having both thread stop / thread continue and thread suspend / thread resume
is the different use of these services. thread stop and thread continue are used e.g. for debug-
ging when a thread has to be stopped for a longer period of time (visible for the user of a tool and
for other tools), while thread suspend and thread resume are used e.g. to ensure that the state
of some threads do not change during the execution of an action list or a sequence of unconditional

cg-wp3.3-ocmg-devguide PUBLIC 47/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

requests (invisible for the user of a tool and for other tools). Since on some platforms suspending a
single thread may be extremly complicated if not impossible, an implementation is free to suspend
more than the specified threads, e.g. all threads in the same process. High quality implementations
should of course try to be as little intrusive as possible.

4. thread resume . resume a thread. (R)

void

thread_resume(token* thread_list)

This service decrements the suspend count for all threads specified by thread list. When the count
is zero for a thread, that thread is removed from the suspended state. However, an implementation
is free to still prevent these threads from executing until there is no longer any thread in a suspended
state. In any case, execution of the thread may still be prevented by a previous call to thread stop
or the execution of an action list associated with an event in that thread.

See thread suspend for a rationale.

5. thread goto . set the PC of a thread. (O)

void

thread_goto(token* thread_list, integer addr)

Sets the program counter (PC) of the threads specified by thread list to the value addr. On
some processors (e.g. Sparc) this also includes initialization of pipeline registers. The service has
the effect of executing a jump instruction to that address in the current context of the specified
threads. Note that this service only manipulates the threads’ program counter, it does not continue
the threads if they are stopped.

6. thread call . save and set the PC of a thread. (O)

void

thread_call(token* thread_list, integer addr)

Like thread goto, this service sets the program counter (PC) of the threads specified by thread list
to the value addr. However, it first saves the current PC (i.e. the return address) in a way con-
forming to the node processors’ calling conventions, effectively performing a subroutine call in the
current context of the specified threads. The tool must ensure that the proper parameters for the
called subroutine (if any) are already loaded into the proper registers and/or memory locations.
Note that this service only manipulates the threads’ registers and stack, it does not continue the
threads if they are stopped.

5.1.4.2 Information Services

The following services can be used to obtain information on an application’s threads:

1. thread get backtrace determine a thread’s procedure stack backtrace. (R)

typedef struct {

integer pc; // Program counter / return address

integer fp; // Frame pointer

} Stack_element;

struct {

integer num_frames;

Stack_element* stack;

}

thread_get_backtrace(token* thread_list, integer depth)

cg-wp3.3-ocmg-devguide PUBLIC 48/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

The service thread get backtrace returns the current procedure stack backtrace of all threads
specified by thread list. The backtrace consists of a list of pairs for each active procedure invoca-
tion. Each pair contains the procedure’s frame pointer and the current execution address in that
procedure. The record for the most recent procedure invocation is returned as the first element of
the list. The parameter depth determines the maximum depth of the backtrace, i.e. at most the
first depth entries of the backtrace will be returned. If depth is zero, the complete backtrace will
be returned. This service is mainly used for debugging or performance analysis based on sampling.

5.1.4.3 Event Services

The following services notify the caller on certain thread related events that occur in the monitored
application. When one of these events is detected, the thread that generated the event will be temporarily
suspended until all action lists associated with the event have been executed. When this thread is
suspended, most implementations will at the same time also suspend all other threads within the same
process, since this is the default behavior of the underlying operating system mechanisms. However, OMIS
does not guarantee this behavior, since there are platforms where it cannot be achieved. Since threads use
a common memory, this results in a chance that other threads change the memory contents before or while
the action lists are executed. To avoid this behavior, enclose the action list in a thread suspend($proc)
/ thread resume($proc) pair. A high quality implementation should try to stop all thread in the
process as soon as possible in this case, thus reducing (but not totally eliminating) this problem.

Note that only the service specific event context parameters are specified in this section. The common
event context parameters contain further information on the detected event, especially the tokens of the
node, process and thread where the event occurred.

1. thread creates proc . A thread creates a new process. (O)

void

thread_creates_proc(token* thread_list)

--> struct {

token new_proc; // token of the process that is being created

}

The service thread creates proc reports when a thread in thread list creates a new process.
The event is raised immediately before the initial thread of the new process starts its execution.
The event context parameter new proc contains the token of the new process. Thus, proc attach
may be used in the action list to attach the monitoring system to that process.

If the programming model of the monitored thread allows to create processes on a remote node
without a need to first explicitly add this node to the application’s node set (as it has to be done
for instance in PVM), the creation of a process on a node not yet used before will first raise a
thread adds node event, followed by a thread creates proc event.

The thread creates proc is only guaranteed to be raised when the thread creates the process by
’legal’ means of the programming library used. This means that if e.g. a PVM task creates a new
process via a fork system call, process creation may not be detected.

2. thread has terminated . A thread has terminated. (R)

void

thread_has_terminated(token* thread_list)

--> void // no service specific event context parameters

Event thread has terminated is raised when a thread in thread list has terminated. There is
no guarantee that the thread is still accessible when the event is detected.

cg-wp3.3-ocmg-devguide PUBLIC 49/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

3. thread received signal . A thread received a signal. (O)

void

thread_received_signal(token *thread_list, integer *sig_list)

--> struct {

integer sig; // signal number

}

This event is raised whenever a thread in thread list received a signal in sig list. It provides the
signal number as an additional event context parameter.

4. thread has been stopped . A thread has been stopped by the
monitoring system. (R)

void

thread_has_been_stopped(token* thread_list)

--> void // no service specific event context parameters

This event is raised when a thread in thread list is stopped by the monitoring system (using the
thread stop service).

5. thread has been continued A thread has been continued by the
monitoring system. (R)

void

thread_has_been_continued(token* thread_list)

--> void // no service specific event context parameters

This event is raised when a thread in thread list is continued by the monitoring system (using the
thread continue service).

6. thread reached addr . A thread reaches a given code address. (R)

void

thread_reached_addr(token* thread_list, integer address)

--> void // no service specific event context parameters

The event is raised whenever a thread in thread list is about to execute the machine instruction
at the given address. This service will mainly be used to implement breakpoints for debugging
purposes.

7. thread executed insn . A thread has executed an instruction. (O)

void

thread_executed_insn(token *thread_list)

--> void // no service specific event context parameters

This event is raised whenever a thread in thread list has finished execution of a machine instruc-
tion. This service can be used to implement single stepping and execution tracing of threads.

8. thread has started lib call . A thread has invoked a call to the
programming library. (R)

thread has ended lib call A thread has returned from a call to the
programming library. (R)

cg-wp3.3-ocmg-devguide PUBLIC 50/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

void

thread_has_started_lib_call(token* thread_list, string lib_call_name)

--> struct {

any par1; // the event context parameters are the input

any par2; // parameters of the library call

...

}

void

thread_has_ended_lib_call(token* thread_list, string lib_call_name)

--> struct {

any par1; // the event context parameters are the result

any par2; // parameters of the library call

...

}

These events are raised whenever a thread in thread list is calling the specified routine of the
parallel programming library (e.g. PVM). thread has started lib call is raised just before the
routine is executed, while thread has ended lib call is raised just after the routine returns. In
both cases, the event is not been raised if the routine has been called by another routine in the
programming library, but only when it has been called directly by the application code.

The services are provided for all routines in the programming library; the value of the lib call name
parameter specifies the routine’s name. The service specific event context parameters of these
services are the input or output parameters of the called library routine. They are named par1,
par2, and so on. The number and the types of these parameters depend both on the programming
library used and the selected library call. They are defined in the specification of the extension
handling the specific programming library.

The reason for this two-step approach is to avoid dependencies between the on-line monitoring
interface specification and the supported programming library. It separates the real task of these
services, namely to detect calls to the programming library, from library specific aspects. More-
over, these services could be generated automatically for a specific programming library from a
specification of the library’s function prototypes.

9. thread executes probe A thread executes an application-specific
instrumentation (probe). (O)

void

thread_executes_probe(token* thread_list, string probe_name)

--> struct {

any par1; // the event context parameters are specific

any par2; // to the instrumentation point

...

}

This event is raised whenever a thread in thread list is executing the application-specific instru-
mentation point (probe) specified by probe name.

This document does not specify how this instrumentation is done. It only requires that each
instrumentation point has a unique name. One possible approach is to insert special function calls
into the application code, which then raise this event. The event context parameters returned by
the event may then just be the parameters passed to the special function call.

cg-wp3.3-ocmg-devguide PUBLIC 51/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

5.2 Monitor Objects

Currently, OMIS defines two types of objects in the monitoring system: user defined events and condi-
tional service requests. The latter are monitor objects, since they have to be stored in the monitoring
system, and they can be manipulated by other services. Other monitor objects may be added by dis-
tributed tool extensions, e.g. timers, counters, etc.

In addition, there are some services that cannot be associated with a specific monitor object. They are
introduced in Section 5.2.2.

5.2.1 Conditional Service Requests

5.2.1.1 Manipulation Services

1. csr enable Enable a previously defined conditional service request. (R)
csr disable Disable a previously defined conditional service request. (R)

void

csr_enable(token* csr_list)

void

csr_disable(token* csr_list)

These services will enable or disable the previously defined conditional service requests specified by
csr list. csr list is a list of conditional service request tokens, which are returned as the immediate
result of a conditional service request. Since all conditional service requests are initially disabled,
they must be enabled explicitly. The services can also be used for temporarily disabling breakpoints
or performance measurements. Since they can be used as actions, it is possible to start and stop
monitoring of an event based on the occurrence of another event. In this way, the detection of
complex distributed events or conditional performance measurements are possible.

2. csr delete Delete a previously defined conditional service request. (R)

void csr_delete(token* csr_list)

This service deletes the conditional service requests specified by the tokens in csr list.

5.2.2 Miscellaneous

5.2.2.1 Synchronous Services

1. print . Return arguments. (R)

struct {

integer numargs; // number of elements in following list

any* args; // copy of argument list

}

print(any* args)

Sometimes a tool wants to be directly notified about an event occurrence and its parameters. For
this purpose, the service print is available. It simply returns its arguments in its result structure.

2. mon version . Return version information. (R)

cg-wp3.3-ocmg-devguide PUBLIC 52/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

struct {

integer omis_major; // Major version of OMIS specification

// the monitoring system complies to.

integer omis_minor; // Minor version of OMIS

string ocm_ident; // String identifying the implementation

// of the OMIS compliant monitoring system

// (vendor specific)

integer ocm_major; // Major version of monitoring system

// (defined by vendor)

integer ocm_minor; // Minor version of monitoring system

// (defined by vendor)

}

version()

This service returns version information on the monitoring system. This includes the proper version
of the OMIS specification (i.e. omis major = 2, omis minor = 0 for this version), and a vendor-
defined name and version numbers for monitor implementation.

3. mon extensions . Return a list of available extensions. (R)

struct {

integer numext; // number of elements in following list

string* extension; // the prefix used for this extension

}

extensions()

This service allows to ask which monitor extensions or distributed tool extensions are available in
a monitor. It returns the list of the prefixes used for the services of the available extensions. Thus,
tools can decide whether the necessary extensions are available, and they may handle the cases
where less important extensions are missing.

4. mon services . Return a list of available services. (R)

struct {

integer numfully; // number of elements in following list

string* fully_impl; // names of fully implemented services

integer numpart; // number of elements in following list

string* part_impl; // names of partially implemented services

}

services(string extension)

This service allows to obtain the names of all services which are fully or partially implemented by
the extension defined by its prefix string. If extension is the empty string, the names of all services
provided by the basic monitoring system are returned.

cg-wp3.3-ocmg-devguide PUBLIC 53/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

6 Specification of the Generic Application Extension

This extension provides a generic means to refer to an arbitrary subset of processes as one application
entity. It introduces a new object class for applications and services to get information on an application.
The constructor of application objects identifies the application by a string. This document does not
specify how the connection between this string and the application’s processes is established technically.
One way to do this is to pass the application name to each process when it starts up.

6.1 Data Types

The extension introduces a new token class: application tokens. The prefix ’app ’ is used for these tokens.
In order not to break the hierarchy of system objects (each object class should have only one parent class),
application tokens are not subject to expansion or localization.

6.2 System Objects

6.2.1 Manipulation Services

1. app attach2 . attach to an application. (O)

token

app_attach2(String appname)

Calling this service results in the monitoring system attaching itself to the application specified by
its name appname. Note that this service just is a constructor for an application token, it does
not imply that the monitoring system attaches to any process or thread of the application, nor to
any site or node used by it. The service returns the token of the application which can be later
used to obtain the list of the application’s processes using the app get proclist service.

6.2.2 Information Services

Currently, the only information service related to applications is app get proclist which returns the list
of all processes of the application.

1. app get proclist . Return the process list of an application. (P)

typedef struct {

token site; // The site token

token node; // The node token

token proc; // The process token

} procinfo;

struct {

integer num_procs; // Number of elements in the following list

// i.e. number of processes in the application

procinfo* procs; // List of site/node/process tokens

}

app_get_proclist(Token app)

cg-wp3.3-ocmg-devguide PUBLIC 54/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Calling this service results in the monitoring system returning information on the processes of
the application specified by the token app. For each process of the application three tokens are
returned: site token, node token, and process token.

cg-wp3.3-ocmg-devguide PUBLIC 55/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

7 Specification of the Performance Analysis

Extension

7.1 Data Types

This extension defines two new token classes useful for performance analysis tools: counters and integra-
tors.

7.1.1 Counters

Counters are essentially plain integer variables that can just be incremented, read, and reset. They are
intended to be used mainly for measuring values like e.g. a message count (by incrementing the counter
by one for each message event) or a message volume (by incrementing the counter by the message length).

Usually, to obtain a meaningful measurement of a value changing with time, we not only need the
measurement value, but also the time stamp indicating when the measurement was performed. Experience
with on-line performance analysis tools showed that in addition to this time stamp, a second one is useful,
which provides the time of the beginning of the current measurement. In this way, a counter value is
accompanied by the time interval during which a measurement was carried out. Thus, when a counter is
read, the following elements are returned:

1. value — the current value of the counter,

2. time — the current time, i.e. the end time of the measurement interval,

3. start_time — the start time of the measurement interval.

See the description of the read services below.

7.1.2 Integrators

Integrators be used for storing floating values. They are intended to support the measurement of the
duration of some activity, e.g. the time spent in library calls for sending or receiving messages. As the
name implies, what they actually measure is an integral of a function which is constant over some interval.
An integrator conceptually consists of three variables:

1. current_value — the current value of the function,

2. last_time — time of the last update of the integrator,

3. integral_value — the function’s integral value at the time of the last update.

All three variables are initially set to 0.

There is a method to update the integrator, which takes a time and an increment as its parameters.
It performs the following computation:

1. integral_value += current_value * (time - last_time)

2. last_time = time

cg-wp3.3-ocmg-devguide PUBLIC 56/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

3. current_value += increment

The duration of some activity can thus be measured in the following way:

• at the beginning of the activity: update the integrator with an increment of 1,

• at the end of the activity: update the integrator with an increment of -1.

This seemingly complicated procedure makes it possible to correctly measure the duration for concurrent,
overlapping activities, too.

When an integrator is read at a specific time, the following elements are returned:

1. integral_value + current_value * (time - last_time) — the current value of the function’s
integral,

2. current_value — the current value of the function,

3. time — the current time, i.e. the end time of the measurement interval,

4. start_time — the start time of the measurement interval.

See the description of the read services below.

7.1.3 Global and local objects

There are several variants of counters or integrators:

• local counters/integrators,

• global counters/integrators,

• arrays of local counters/integrators.

The local objects are accessible only on the node where they have been created.

In contrast, the global objects can be accessed from any node in the target system. The specification
strongly recommends that these objects are implemented in a scalable, distributed way (e.g. by creating
a local counter/integrator on each node and returning a properly aggregated global value when the
counter/integrator is read).

In addition, arrays of local objects are provided. These arrays can be indexed with node, process, or
thread tokens. Array elements are allocated on demand: when the array is indexed with some token for
the first time, a local counter or integrator is created on the token’s local node and is added to the array.
Arrays of counters / integrators support the comfortable performance measurement of several processes,
using a minimal number of requests.

7.1.4 Token prefixes

The performance analysis extension uses the following prefixes for the different kinds of objects:

local global array
counter pa cl pa c pa ac

integrator pa il pa i pa ai

cg-wp3.3-ocmg-devguide PUBLIC 57/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

7.2 Services

7.2.1 Local counters

7.2.1.1 Manipulation Services

1. pa counter local create . create a new local counter. (R)

token

pa_counter_local_create(token* objlist)

This service creates a new local counter for each object specified in objlist. The local counter
created is only accessible on the node where it was created. objlist typically contains a list of node
or process tokens. Token expansion is performed only down to the node level, i.e., nodes are not
expanded to processes, so only one local counter is created for each node token passed.

The counter value of all counters created are initialised with 0.

2. pa counter local delete . delete a local counter. (R)

void

pa_counter_local_delete(token* counter_list)

This service is used to delete the local counters specified in counter list, formerly created with
pa counter local create.

3. pa counter local attach . attach to a local counter. (O)

void

pa_counter_local_attach(token* counter_list)

The pa counter local attach service attaches the local counters specified in counter list, so
that they can be used in the current OMIS session.

Using this service is normally not needed, since the local counters are attached upon creation by
pa counter local create. Its only use is when passing tokens between two tools.

4. pa counter local detach . detach from a local counter. (O)

void

pa_counter_local_detach(token* counter_list)

This service detaches the tokens specified in counter list, which have been formerly attached by
pa counter local attach.

The only use of this service is when passing tokens between two tools.

5. pa counter local increment . increment a local counter. (R)

void

pa_counter_local_increment(token counter, integer increment)

This service increments the value of the local counter passed in via counter by the value specified
in increment.

cg-wp3.3-ocmg-devguide PUBLIC 58/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

7.2.1.2 Information Services

1. pa counter local read . return the value of a local counter. (R)

struct {

floating value; // return value, see below

floating time; // time when counter was read

floating start_time; // start time of measurement, see below

}

pa_counter_local_read(token* counter_list, integer flags)

This service returns the current values of the local counters that are specified in counter list. If
Bit 0 is set in flags, the counters are reset to 0 after thay have been read and the start time
returned for a counter is the time when the previous read operation has been performed on this
counter. Otherwise, start time is the time when the counter has been read first. If Bit 1 is set in
flags, the return value is the counter’s value divided by (time - start time), otherwise, it is just
the counter’s value.

7.2.2 Local integrators

The following section describes the services that operate on local intergrators.

7.2.2.1 Manipulation Services

1. pa integrator local create . create a new local integrator. (R)
pa integrator local delete . delete a local integrator. (R)
pa integrator local attach . attach to a local integrator. (O)
pa integrator local detach . detach from a local integrator. (O)

token

pa_integrator_local_create(token* objlist)

void

pa_integrator_local_delete(token* integrator_list)

void

pa_integrator_local_attach(token* integrator_list)

void

pa_integrator_local_detach(token* integrator_list)

These services work analogously to their local counter counterparts.

2. pa integrator local increment . increment a local integrator. (R)

void

pa_integrator_local_increment(token integrator,

floating increment,

floating time)

This service updates the local integrator passed in via integrator. With the help of the time
parameter, as well as that of internal variables of the integrator, a new integral value of the integrator

cg-wp3.3-ocmg-devguide PUBLIC 59/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

is calculated. increment is then added to the internal value of the integrated function, and time
replaces the internal integrator time.

Typically, increment is set to 1 at the beginning of an event and to −1 at the end, while time is
set to event context parameter $time.

7.2.2.2 Information Services

1. pa integrator local read . return the state
of a local integrator. (R)

struct {

floating integral;

floating value;

}

pa_integrator_local_read(token* integrator_list, floating time,

integer clear)

This service returns the current state of the local integrators specified in integrator list. It returns
the current integral value, as well as the current value of the integrated function.

time is used to calculate the integral value if pa integrator local read was called in the middle
of an event (i.e. when the value of the integrated function is nonzero). When time is 0, which is
usually the case, the current time is used.

If clear is nonzero, the integral values of integrators are reset to 0 after reading.

7.2.3 Global counters

The following section describes the services that operate on global counters.

7.2.3.1 Manipulation Services

1. pa counter global create . create a new global counter. (R)

token

pa_counter_global_create()

This service creates a new global counter.

The created counter is 0–initialised.

2. pa counter global delete . delete a global counter. (R)
pa counter global increment . increment a global counter. (R)

void

pa_counter_global_delete(token* counter_list)

void

pa_counter_global_increment(token counter, integer increment)

These services work analogously to their local counter counterparts.

cg-wp3.3-ocmg-devguide PUBLIC 60/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

7.2.3.2 Information Services

1. pa counter global read . return the value of a global counter. (R)

integer

pa_counter_global_read(token* counter_list, integer clear)

This service works analogously to pa counter local read.

7.2.4 Global integrators

The following section describes the services that operate on global integrators.

7.2.4.1 Manipulation Services

1. pa integrator global create . create a new global integrator. (R)
pa integrator global delete . delete a global integrator. (R)
pa integrator global increment . increment

a global integrator. (R)

token

pa_integrator_global_create()

void

pa_integrator_global_delete(token* integrator_list)

void

pa_integrator_global_increment(token integrator,

floating increment,

floating time)

These services work analogously to their global counter and local integrator counterparts.

7.2.4.2 Information Services

1. pa integrator global read . return the state
of a global integrator. (R)

struct {

floating integral;

floating value;

}

pa_integrator_global_read(token* integrator_list,

floating time, integer clear)

This service works analogously to pa integrator local read.

7.2.5 Arrays of counters

The following section describes the services that operate on arrays of counters. Actually, in this case only
a creation service is needed, since the services for local counters (see Section 7.2.1) are used to operate
on arrays.

cg-wp3.3-ocmg-devguide PUBLIC 61/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

7.2.5.1 Manipulation Services

1. pa ac create . create a new array of local counters. (R)

token

pa_ac_create()

This service creates a new array of local counters.

7.2.6 Arrays of integrators

The following section describes the services that operate on arrays of integrators. Actually, in this case
only a creation service is needed, since the services for local integrators (see Section 7.2.2) are used to
operate on arrays.

7.2.6.1 Manipulation Services

1. pa ai create . create a new array of local integrators. (R)

token

pa_ai_create()

This service creates a new array of local integrators.

cg-wp3.3-ocmg-devguide PUBLIC 62/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

8 Specification of the Symbol Table Extension

8.1 Introduction

This extension provides some information on a process’s symbol table. Currently, it just can deliver
information on text symbols (functions).

8.2 Services

8.2.1 Information Services

1. symtab proc get functions Return a list of a process’s functions. (R)

struct {

string file_name; // "GLOBAL" for global functions,

// name of the object file for static ones

string function_name; // the function’s name

integer start_address; // the function’s start address

integer end_address; // the function’s end address

} function_info;

function_info *

symtab_proc_get_functions(token* proc_list)

This service returns a list of function names, together with their start and end addresses for each
process in proc list.

2. symtab proc get function addr Return the address of a process’s function. (R)

struct {

integer start_address; // the function’s start address

integer end_address; // the function’s end address

}

symtab_proc_get_function_addr(token* proc_list, string name)

This service returns a the start and end address of the function with the specified name for each
process in proc list.

cg-wp3.3-ocmg-devguide PUBLIC 63/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

9 Specification of the G-PM Extension

9.1 Introduction

Generic performance analysis services are provided within the Performance Analysis Extension which is
part of the OMIS specification [1]. This section presents the additional services which were designed to
satisfy some specific features of the G-PM performance tool1.

The features provided by these services allow to limit the scope of measurements in the G-PM to a
user-specified subset of the functions in his application. Currently the base OMIS specification does not
support the notion of the application functions as objects.

Another feature that cannot be specified using OMIS services is the notion of partner objects. Partner
objects are secondary objects involved in some operations such as communication calls. In communication,
always at least two parties are involved: a primary object and a secondary object. From the point of
view of send operations, the primary object is the sender, while the secondary (partner) object is the
receiver. For receive operations this is the other way round.

Original OMIS services for detecting start and end of function calls can be parametrized, as all OMIS
services, with primary objects, for example we can limit the detection MPI Send start event to particular
processes. With partner objects we can specify events such as: start of MPI Send in process p1 but only
if the message destination is process with rank 2.

In general, when monitoring the communication calls, the services described in below allow to limit the
scope of event detection to just some destination processes in case of the messages sent or to some source
processes in case of the messages received.

9.2 Services

9.2.0.1 Event services

1. patop lib call started . A thread has invoked
a communication library call. (R)

patop lib call ended . A thread has returned from
a communication library call. (R)

void

patop_lib_call_started(token* thread_list,

string lib_call_name,

integer* tid_list, integer* func_list)

--> struct {

integer len;

integer potential;

}

void

patop_lib_call_ended(token* thread_list, string lib_call_name,

integer* tid_list, integer* func_list)

1These services were actually designed for the predecessor of the G-PM tool, PATOP, hence the prefix of the services’
names

cg-wp3.3-ocmg-devguide PUBLIC 64/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

--> struct {

integer len;

}

These services are filters for the basic OMIS services thread has started lib call and thread has ended lib call.
They accept the same parameters as the standard services, plus two new ones.

• tid list is a list of partner objects, which are actually process identifiers. The events are
triggered by some calls to communication routines only if objects mentioned in tid list are
involved in the communication as partner objects, i.e. are destination processes for send
operations or source processes for receive ones. An empty list matches all processes. Note that
numbers in tid list are meant as task identifiers from the target parallel environment, such
as MPI ranks, not OMIS tokens.

• func list is a list of function names. The event is triggered only when it occurred within
a function from the list. An empty list matches all functions. The list consists of pairs of
addresses: the beginning and the end of the code of the function.

For convenience, the services provide a new Event Context Parameter $len that contains the
message length. Otherwise this value could be extracted from parameters of communication function
calls, but this depends on the particular functions. If the message length is unknown, $len is set
to 0.

At the start of the message receive call, the sending process might not be known. For this reason,
patop lib call started provides an additional Event Context Parameter: $potential. It is set
to 0 when the event is known to be of interest, and to 1 if it only might concern the monitoring
tool. Whether the event is actually of concern is not known until the end of the communication
call. Therefore, these two cases can be distinguished by patop lib call ended: if it triggers, then
the event was actually of interest, otherwise not. See also patop integrator global increment
and patop integrator local increment.

9.2.0.2 Manipulation services

1. patop integrator global increment . increment
a global integrator. (R)

patop integrator local increment . increment
a local integrator. (R)

void

patop_integrator_global_increment(token integrator,

floating increment,

floating time,

integer potential)

void

patop_integrator_local_increment(token integrator,

floating increment,

floating time,

integer potential)

These services act as wrappers for pa integrator global increment and pa integrator local -
increment, and are specially designed to work together with patop lib call started and patop -
lib call ended.

cg-wp3.3-ocmg-devguide PUBLIC 65/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

They accept one additional parameter: potential. This parameter should be set to 1 at the
beginning of an event when it is not certain if the event should be recorded. In all the other cases
it must set to 0.

If a potential beginning of an event was found to be of no interest, then these services must not
be called again at the end of the event at all. If the event was found to be of interest, then these
services should be called again at the end, just as normally.

A number of restrictions are in place:

(a) For any given process and any given integrator, only one potential beginning at a time is
supported.

(b) increment must be less than 0 at the event’s end.

cg-wp3.3-ocmg-devguide PUBLIC 66/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

10 The OCM-G Extension Interface

10.1 The C-Interface for Services

This section specifies, how new OMIS services can be added to OCM-G. The basic idea how extending
OCM-G works is as follows:

1. For each extension, a registry file has to be provided that specifies the new services and their
relevant attributes.

2. For each service in the extension, one or more C functions have to be written. The functions for all
services of the extension are collected into a single extension library. A translator creates prototype
definitions for these functions from the registry file. In addition, it creates some code to be included
in the extension library.

3. This library is then linked to the OCM-G using a special tool.

In the following subsections we specify the syntax of the registry file, the interfaces for the C-functions
implementing new services, and how these functions can efficiently invoke already existing services.

10.1.1 Mapping of OMIS Data Types

Since OMIS services have to be implemented by C-functions, there must be a mapping between the OMIS
data types and C data types. This mapping is specified in Table 10.1.

OMIS data type C data type
integer long

floating double

string char *

token Ocm_obj_token

binary Ocm_bin_string

any Ocm_any_val

Table 10.1: Mapping between OMIS data types and C data types

Ocm_obj_token is an opaque data type as specified in Section 4.2.2.1. The other types are defined as
follows:

typedef enum {

Ocm_any,

Ocm_integer,

Ocm_floating,

Ocm_string,

Ocm_binary,

Ocm_token,

Ocm_list

} Omis_param_type;

typedef struct ocm_list {

cg-wp3.3-ocmg-devguide PUBLIC 67/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Omis_param_type type; /* The type of the elements */

int length; /* Number of elements */

union {

long *i; /* type == Ocm_integer */

double *f; /* type == Ocm_floating */

char **s; /* type == Ocm_string */

Ocm_bin_string *b; /* type == Ocm_binary */

Ocm_obj_token *t; /* type == Ocm_token */

struct ocm_list *l; /* type == Ocm_list */

struct ocm_any *a; /* type == Ocm_any */

} value;

} Ocm_list_val;

typedef struct ocm_any {

Omis_param_type type; /* The type of this value */

union {

long i; /* type == Ocm_integer */

double f; /* type == Ocm_floating */

char *s; /* type == Ocm_string */

Ocm_bin_string b; /* type == Ocm_binary */

Ocm_obj_token t; /* type == Ocm_token */

Ocm_list_val l; /* type == Ocm_list */

} value;

} Ocm_any_val;

Lists are passed in a different way, depending on their nesting level. A parameter of a service, which has
a list type, is passed to the C function implementing that service as two parameters: An int parameter
specifying the length of the list, and a second parameter being an array of the C type corresponding to the
list’s element type. As an example, consider the thread_send_signal service, which has the following
parameter list:

token* threads, integer sig

This is mapped to the following parameters

int num_threads, Ocm_obj_token threads[], long sig

which are passed to the C function implementing the service. List that are nested inside lists, or are
passed to a parameter of type any, are mapped to an Ocm_list_val structure. Thus, a list of lists of
integers would be mapped like this:

..., int num_lists, Ocm_list_val lists[], ...

Each element in lists has type == Ocm_integer and value.i pointing to an array of integer values.
This different handling of lists is done in order to have a simple interface for the most common case (i.e.
non-nested lists), without giving up the ability to handle the complex cases, too.

The OCM-Gperforms parameter type checking before passing values to the C functions implementing the
services, so there is no need for a service function to check the type field in an Ocm_list_val structure.
In case of the Ocm_any_val structure, however, the type field is essential, since the type is not statically
known.

cg-wp3.3-ocmg-devguide PUBLIC 68/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

10.1.2 The Execution Context

In OCM-G, a service can be executed in the context of different kinds of processes:

• The Main Service Manager, i.e. the central process of the monitoring system,

• the Service Manager running on each site of the target system,

• the Local Monitor running on each host of the target system,

• the Application Module, which is included in the monitored application processes.

Where a service is executed depends on (1) the ’context’ attribute in the registry file (see Section 10.1.4,
and (2) the localization of the objects the service is invoked on.

10.1.3 Invoking Services From Within Other Services

The services implemented in an extension will often be based on already existing services (either a basic
service or a service defined by another extension). So there should be mechanisms for calling other
services from within a service. OCM-G defines two such mechanisms. One handles the most simple, but
also most common case, where you just want to call an information or manipulation service. The other
mechanism handles the rare cases where you want to submit a complete service request from within a
service. These two mechanisms are explained in the next subsections.

There is also a mechanism that allows events to be based on other events. This is explained in Sec-
tion 10.1.4.4.

10.1.3.1 Local Information/Manipulation Services

An information or manipulation service that can be executed locally, can be invoked simply by calling a
C function associated with that service. The exact condition for the feasibility of local execution is that
the called service must have the same execution context as the calling one, and must be invoked only
on objects located on the local node. Note that the latter condition is always true when the service is
invoked on objects passed to the calling service.

The C prototype for the function associated with an action (i.e. an information or manipulation service)
is as follows:

int ocm_action_<service_name>(Ocm_expansion_context context,

Omis_service_result *result,

<service_parameters>);

Here <service_name> refers to the name by which the service is known at the OMIS tool/monitor-
interface, <service_parameters> must be replaced by the proper transcription of the service’s input
parameters (see Section 10.1.1). Object tokens passed to the called service need not match the token
class the service operates on; they will be converted as described in Section 4.2.2.

The context parameter specifies an internal execution context of the OCM-G. It should not be changed
or interpreted by the action. It is provided only because it needs to be passed to all services called by
the current one.

The ocm_action_<service_name> function returns two results: The function’s return value indicates
the presence of errors during its execution. If the return value is ≥ 0, no errors occurred; if it is < 0,
there has been an error for at least one of the objects the service operated on.

More detailed results and/or error descriptions, if any, are returned via the result parameter. When a
non-NULL value is returned, this is a pointer to a dynamically allocated array of Omis_object_result

cg-wp3.3-ocmg-devguide PUBLIC 69/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

structures, as defined in Section 4.3. When a NULL value is returned, there is either no real result of
the invoked service, which is usually the case with manipulation services, or an out-of-memory error
occurred, preventing the function from allocating an Omis_object_result structure. These cases can be
distinguished by examining the function’s return value.

Section 10.1.4.3 provides a small example showing how to call actions using this interface.

10.1.3.2 Arbitrary Requests

To submit arbitrary service requests to the monitoring system, a function implementing a service can call
a special version of omis_request, named omis_request_context. It works exactly like omis_request,
with the only exception that it accepts an additional argument to pass the Ocm_expansion_context of
the calling service:

Omis_reply

omis_request_context(Ocm_expansion_context context,

const char * request,

void (* callback)(Omis_reply reply, void * param),

void * param,

Omis_flags flags)

10.1.4 Adding New Services

10.1.4.1 The Registry File

Each extension of the OCM-G is described by a registry file specifying the services and tokens provided
by that extension. In this subsection, however, we are only specifying the part of the registry file that
is concerned with services; the part defining new token types is introduced in Subsection 10.2.2.1. The
syntax of the registry file, which is relevant for services, is as follows:

registry ::= header entries
header ::= ext title opt require opt init
ext title ::= ’extension’ extension name ’;’
extension name ::= identifier
opt require ::= ’requires’ extension name list ’;’ | ε
extension name list ::= extension name | extension name ’,’ extension name list
opt init ::= ’init function’ ’=’ identifier ’;’
entries ::= token entries hook entries service entries
service entries ::= service entry service entries | ε
service entry ::= ’event’ service name ’(’ parameters ’)’ ’:’ ’(’ ecps ’)’ opt attributes ’;’

| ’action’ service name ’(’ parameters ’)’ opt attributes ’;’
service name ::= identifier
parameters ::= parameter list | ε
parameter list ::= parameter | parameter ’,’ parameter list
parameter ::= type spec parameter name
parameter name ::= identifier | ε
type spec ::= type name list spec
type name ::= identifier
list spec ::= ’*’ | ε
ecps ::= ecp list | ecp list ’,’ ’...’ | ’...’ | ε
ecp list ::= ecp | ecp ’,’ ecp list
ecp ::= qualifier type spec ecp name
qualifier ::= ’local’ | ε

cg-wp3.3-ocmg-devguide PUBLIC 70/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

ecp name ::= identifier
opt attributes ::= ’{’ attribute list ’}’ | ε
attribute list ::= attribute attribute list | ε
attribute ::= attribute name ’=’ attribute value ’;’
attribute name ::= identifier
attribute value ::= identifier | integer

Comments are allowed at anywhere in between two syntactic elements. The syntax for comments in as
in C++, i.e. there are line comments introduced by ’//’ and block comments delimited by ’/*’ and ’*/’.

As can be seen from the syntax, a service entry in the registry file consist of two parts: the first (manda-
tory) part defines the service’s input parameters. In case of an event service it also specifies the (non-
standard) event context parameters after the colon (’:’). The second (optional) part is used to define
attributes providing information on the service’s implementation. The semantics of the keywords and
the supported attributes are specified in tables 10.2 and 10.3. A more detailed description of their usage
is given in the next sections.

Keyword Description

’extension’ The following identifier defines the name of the extension, i.e. the prefix
used for all services.

’requires’ The list of identifiers that follows this keyword defines all extensions this
extension depends on.

’init function’ The value assigned to this symbol is the name of an initialization function
that is called once after starting up the monitor or this extension. The init
functions of different extensions will be called in an order that respects
the dependencies specified with the ’requires’ keyword. I.e. if extension A
requires extension B, the init function of B will be invoked prior to that
of A.

’action’ The following prototype defines an information or manipulation service.
’event’ The following prototype defines an event service.
’...’ The ellipsis denotes that the number and types of event context parame-

ters is not known statically.
’local’ This qualifier is only allowed in front of a parameter that is a token or

a list of tokens. In this case, it specifies that the token(s) reference an
object that is located on the node where the event occurrs.

Table 10.2: Semantics of keywords in the registry file

The OCM-G contains a utility named makeregistry which is invoked as follows:

makeregistry <name_of_registry_file> <name_of_output_directory>

It reads the registry file and translates it into a couple of files that are stored in the named output
directory. In particular, the following files will be generated:

• A header file for each defined service, that should be included by the C source file implementing
the service. This file will contain the C prototype of the function implementing the service (see
Sections 10.1.4.3 and 10.1.4.4) and also includes all other necessary header files.

• An implementation dependent number of other C source and header files which need to be added
to the extension library.

• A makefile, that compiles these files and updates the extension libraries to be linked to the moni-
toring system and the application processes, respectively.

cg-wp3.3-ocmg-devguide PUBLIC 71/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Attribute Values Description

’context’ ’monitor’
’mainsm’
’sm’
’application’

Defines the context where the action must be exe-
cuted, or where the event is detected, respectively.
Several alternative values can be specified, separated
by white space.

’support’ ’full’
’partial’
’none’

Specifies whether the service is fully or partially sup-
ported, or not supported at all.

’localize’ ’node’
’site’
’process’
’none’

Specifies whether the service must be localized to a
specific node, site, or process. ’none’ means that the
service can be executed anywhere, provided that the
restrictions given by ’context’ are met.

’localize arg’ integer
(default: first token
or token list param-
eter)

Specifies the position of the input parameter used for
automatic token conversion (see section 10.1.4.2) and
for determining the node where the service is to be
executed. The specified parameter must either be a
token or a token list. The service will be executed
on the node, site, or process (depending on the value
of ’localize’) where the object referenced by the token
resides.

’scope’ ’extern’
’intern’

If ’intern’, the service cannot be invoked via the OMIS
tool/monitor-interface.

’auto convert to’ identifier
[’..’ identifier]
(default: no auto-
matic conversion)

When this attribute is set, it is interpreted as the
prefix specifying the token class used as the target of
automatic token conversion. See section 10.1.4.2.

’allow unattached’ ’false’
’true’

Only relevant when automatic token conversion is in
effect. When set to ’true’, the service can be invoked
for objects not attached by the tool. Otherwise, the
monitoring system checks that objects are attached
before calling the service.

’instrumentation’ ’on enable’
’on define’

Specifies when the instrumentation necessary to de-
tect an event should be performed.

’service function’ identifier
(default: ser-
vice name)

Allows to specify a different name for the function
implementing the service.

’filter function’ identifier
(default: ser-
vice name)

Allows to specify a different name for the filter func-
tion of an event. May be ’NULL’ when no such func-
tion is needed.

’instrument function’ identifier
(default: ser-
vice name)

Allows to specify a different name for the instrumen-
tation function of an event. May be ’NULL’ when no
such function is needed.

’delete function’ identifier
(default: ser-
vice name)

Allows to specify a different name for the delete func-
tion of an event. May be ’NULL’ when no such func-
tion is needed.

’distribution function’ identifier
(default: ’NULL’)

Allows to specify a special request distribution func-
tion for this service.

’assembly function’ identifier
(default: ’NULL’)

Allows to specify a special reply assembly function for
this service.

Table 10.3: Attributes in the registry file

cg-wp3.3-ocmg-devguide PUBLIC 72/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

10.1.4.2 Automatic Token Conversion

For increased scalability and ease of use, OMIS defines that a token or a list of tokens passed to a service
will be converted to the token class the service works on. As this conversion is independent on the
actual service, the code actually performing this conversion can be generated by the makeregistry tool.
However, there may be cases where the implementation of a service needs to see the original token list.
Thus, automatic token conversion is optional and can be controled via the registry file. There are three
attributes that control automatic token conversion:

• ’auto convert to’
If this attribute is not defined, makeregistrywill not generate code for automatic token conversion.
Thus, the function implementing the service will receive the original token or token list and must
care for the proper conversion itself. If the attribute is set, it defines the class of tokens expected by
the service. The class is specified by its token prefix, e.g. ’p ’ for process tokens. It is also possible
to specify a range of token classes, e.g. ’t .. p ’. In this case, the tokens are converted to the
nearest class within the specified range.

• ’localize arg’
This attribute specifies the position of the parameter to which automatic token conversion should
be applied. At the same time, this parameter will be used to determine the location where the
service should be executed.

• ’allow unattached’
When automatic token conversion is done and this attribute is set to ’true’ (which is the default), the
generated code will also check whether the resulting tokens are attached by the tool that requested
the service. If a token is not attached, the service will not be invoked for this token. Instead, an
error reply will automatically be generated for this token.

10.1.4.3 Implementing Manipulation and Information Services

Manipulation and information services are in most cases implemented by providing a single C function
as outlined below. Exceptions occur for services that need specific control over the way how the service
is distributed to the local monitors and/or the way how results from local monitors are combined to a
global result. See Section 10.1.4.5 for some more details.

No Automatic Token Conversion When automatic token conversion is switched off, the C prototype
of the function implementing the service is exactly the same as outlined in Section 10.1.3.1:

int ocm_action_<service_function>(Ocm_expansion_context context,

Omis_service_result *result,

<service_parameters>);

Here <service_function> is to be replaced by the value of the service’s ’service function’ attribute in the
registry file. The default for this value is the service name. However, a different name may be explicitly
specified in the registry file. In this case, the function of Section 10.1.3.1 will be automatically generated
by makeregistry. This is useful, if an already existing implementation of a service shall be reused and
made available with a new service name.

<service_parameters> denotes the sequence of the service’s input parameters, mapped to C parameters
as described in Section 10.1.1. Object tokens passed to the service are passed to the implementing
function as-is, i.e. without any conversion or checks. The function is responsible for doing the proper
token conversions and for ensuring that the objects refered to are attached by the calling tool, if necessary.
The routines defined in Section 10.2 can be used to achieve this.

cg-wp3.3-ocmg-devguide PUBLIC 73/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

The context parameter specifies the internal execution context of the OCM-G, which among others
contains an identifier of the tool that requested execution of this service. The context will usually be
passed on to other services or to token conversion and access routines.

The return value of this function must be ≥ 0, if processing was successful, and < 0, if an error occurred
during its execution for at least one of the objects the service operated on.

If the service has a real result (other than a simple OMIS_OK status) or a processing error occurred, the
implementing function must assign a dynamically allocated array of Omis_object_result structures to
*result, which is initialized according to the rules outlined in Section 4.3. Otherwise, it must assign a
NULL pointer. If the function can not allocate the result structure, it should return a negative value and
set *result to NULL, which indicates an out-of-memory condition.

Automatic Token Conversion When automatic token conversion is enabled for a service, the function
implementing that service needs to deal with only one object at a time, which simplifies the implemen-
tation of services operating on token lists. The C prototype of the function to be supplied in this case
is:

Omis_status ocm_sngl_action_<service_function>(Ocm_expansion_context context,

char **result,

<service_parameters>)

The remarks about <service_function>, context, and <service_parameters> in the previous para-
graph also apply in this case, with the following additions:

• The makeregistry tool will always create the function defined in Section 10.1.3.1, as this function
must do the token conversion and must loop over all objects.

• If the service parameter specified by the ’localize arg’ attribute in the registry file is a list of tokens,
only a single token will be passed to the function in <service_parameters>.

The function’s return value must be the status for the processed object; detailed results or error descrip-
tions must be returned as dynamically allocated strings assigned to *result. If the returned status is
OMIS_OK, *result need not be assigned, if there is no real result other than the status. If, however, the
return value indicates an error, *result must be set to a dynamically allocated error description, except
in case of an out-of-memory condition (i.e. OMIS_NO_MEMORY is returned). The return value and the string
assigned to *result are used to build the Omis_object_result structure for the object the function is
called on.

The following short example shows how to specify a hypothetical process service returning a process’s
CPU time. It also shows how to invoke an existing service via its C interface.

Assume the following entry for the service in the registry file:

extension demo;

action demo_proc_get_cpu_time(token *proc_list)

{

auto_convert_to = p_;

}

Then the implementation of this service could look like:

#include <demo_proc_get_cpu_time.h>

#include <proc_get_info.h>

cg-wp3.3-ocmg-devguide PUBLIC 74/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Omis_status

ocm_sngl_action_demo_proc_get_cpu_time(Ocm_expansion_context context,

char **result,

Ocm_obj_token proc)

{

Omis_service_result sr;

Omis_status status;

/*

** prog_get_info will give us the CPU time. There is no need to

** check the return value, since the status is also encoded in sr.

*/

ocm_action_proc_get_info(context, &sr, 1, &proc, (1 << 11));

if (sr == NULL) {

*result = strdup("proc_get_info couldn’t allocate result");

return OMIS_NO_MEMORY;

}

/*

** Just copy the information and free the result of proc_get_info

*/

status = sr[0].status;

*result = strdup(sr[0].result);

ocm_service_result_delete(sr);

/*

** If we couldn’t strdup, we are out of memory.

*/

return (*result != NULL) ? status : OMIS_NO_MEMORY;

}

This code assumes that the directory where makeregistry placed its file for the ’demo’ extension is in
the include search path, as well as the directory containing the include files of the OMIS core. Note that
this example is for the purpose of illustration only; it would not make much sense to really implement it.

More meaningful and complete examples of action implementation are provided in the OCMG source
code in the file src/Monitor/OCM/SERVICES/EXAMPLEEXT/example actions.c.

10.1.4.4 Implementing Event Services

The OCM-G Event Model Before we can go into the details of how to implement new event services,
we have to explain the basics of the OCM-G event model. To start with, we will define two terms that
must not be confused:

event (occurrence):
An event (or event occurrence) is a state transistion in the observed system that happens at some
instance in time. By definition, this means that there can not be two identical event occurrences.

event class:
An event class is a predicate specifying a set of event occurrences. An event belonging to an event
class is said to match that class.

So an event service, together with its actual parameters, defines an event class. For instance, the re-
quest thread_has_started_lib_call([p_1],"pvm_send") defines one event class. Now a basic idea

cg-wp3.3-ocmg-devguide PUBLIC 75/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

of OCM-G is that these event classes form a hierarchy, i.e. it is possible to derive smaller, more spe-
cific event classes from larger ones by using filters. E.g. we could have a hypothetical event service
pvm_task_sends_to_task(token *task_list, token receiver) detecting when a task in task_list

sends to task receiver. Then the event class pvm_task_sends_to_task([p_1], p_2) can be derived
from thread_has_started_lib_call([p_1],"pvm_send") by a filter that compares the event context
parameter containing the receiver task’s token against p_2.

Thus, we end up with a tree, whose root is a completely unspecific event class matched by all events.
Each event class in this tree may be associated with a set of filters, each of which is used to derive a more
specific event class. In addition, some of the event classes may have action lists associated with them.
When an event is detected by the OCM-G, it is matched against all the event classes in that tree by
doing a tree traversal starting at the tree’s root, which matches all events. At each traversed node, the
filters associated with that node are evaluated. If a filter evaluates to true, the event also matches the
derived event class, which is therfore traversed, too. During this tree traversal, the action lists associated
with event classes matched by the event are scheduled for execution.

The Ocm ip Data Type In OCM-G, event classes are represented by an abstract data type Ocm_ip.
A value of this data type is called an IP. In the following, we specify the methods are available for an IP
in OCM-G.

Ocm_ip ocm_evmgmt_ip_new(Ocm_instrmnt parent_filter, void *usrdata);

This is the constructor for an IP that represents an event class derived from another one by a filter.
parent_filter is the handle returned by ocm_evmgmt_ip_filter_add, when this filter was added to the
parent event class. usrdata is a generic pointer that is stored in the Ocm_ip data structure and may point
to user-defined data associated with this IP. It can be retrieved again using ocm_evmgmt_ip_usrdata.

Upon error, this function will return NULL.

Ocm_ip ocm_evmgmt_ip_root_new(int mem_segment, void *usrdata);

This constructor returns an IP that is not derived from another one, but is the root of a new tree.
This means that the IP will never be executed during the normal event processing in the OCM-G, but
may be explicitly triggered by a call to ocm_evmgmt_ip_exec. This call is used only when an extension
implements its own means of detecting certain events.

Upon error, this function will return NULL.

int ocm_evmgmt_ip_delete(Ocm_ip ip);

This is the destructor of Ocm_ip. It returns a value ≥ 0 on success, < 0 on failure.

Ocm_instrmnt ocm_evmgmt_ip_filter_add(Ocm_ip ip,

const char *filter_name,

void *param);

This function adds a filter to an IP that will be called whenever an event matches the event class
represented by that IP. filter_name is the name of the service to which the filter belongs; param is a
generic parameter passed to that filter. See Section 10.1.4.4 for a description of filters. The function
returns a handle that is used to reference this filter instance, or NULL if an error occurred.

cg-wp3.3-ocmg-devguide PUBLIC 76/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

int ocm_evmgmt_ip_instr_remove(Ocm_instrmnt instr);

This function is used to remove a filter again. This function must not be called after the first child IP
has been added to the filter, using ocm_evmgmt_ip_new. Once a child IP has been added to the filter, the
filter will be removed automatically when it no longer has any child IPs. The function returns a value
≥ 0 on success, < 0 on failure.

void * ocm_evmgmt_ip_usrdata(Ocm_ip ip);

Returns the value of the usrdata argument of the call to ocm_evmgmt_ip_newor ocm_evmgmt_ip_root_new
that created the given IP.

Ocm_bool ocm_evmgmt_ip_is_enabled(Ocm_ip ip);

Returns True, iff the given IP is enabled. Enabling and disabling IPs is done by the csr_enable and
csr_disable services. This call is needed in the case where an event service does not make use of
automatic token conversion. In this case, the service’s implementation must decide whether or not to
(un)instrument a process when the results of token conversion changed. This usually depends on whether
or not the IP is enabled.

typedef Ocm_any_val Ocm_ecp_val;

int ocm_evmgmt_ip_exec(int num_ips, const Ocm_ip ips[],

Ocm_evmgmt_context context,

int num_ecps, const Ocm_ecp_val ecps[]);

This function executes a set of IPs given by the array ips of length num_ips, i.e. executes all filters
associated with these IPs and schedules all associated actions lists for execution.

The event context parameters passed to the filters and actions are given by the array ecps of length
num_ecps. They must be stored in the following way: ecps[1] ... ecps[5] contain the values of the
general event context parameters, i.e. node, proc, thread, time, and csr. ecps[0] is reserved for
internal use and need not be initialized. The elements ecps[6] ... contain the service specific event
context parameters of the event service that created the IPs to be triggered. The order in which they
have to be stored corresponds to the order of their definition in the registry file.

The context argument provides a means for OCM-G to pass context information during traversal of the
IP tree. When ocm_evmgmt_ip_exec is called from within a filter to execute some of the filter’s child
IPs, the value of the filter’s context parameter must be passed. If the function is used to trigger a root
IP, NULL should be passed. The function returns a value ≥ 0 on success, < 0 on failure.

Getting an IP for an Event Class For each event service, the makeregistry tool will create a
function

Ocm_ip ocm_event_<service_name>(Ocm_expansion_context context,

Omis_event_hints hints,

Omis_service_result *result,

<service_parameters>);

cg-wp3.3-ocmg-devguide PUBLIC 77/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Here <service_name> refers to the name by which the service is known at the OMIS tool/monitor-
interface, <service_parameters> must be replaced by the proper transcription of the service’s input
parameters (see Section 10.1.1).

This function can be called inside an event define function (see below) to get the IP of a specific event
class, from which a new event class can be derived via a filter.

The context parameter specifies an internal execution context of the OCM-G. The value passed to this
argument should be the same that is received by the event define function. The hints parameter should
be handled in the same way (although it is currently not used in OCM-G).

The Functions Implementing an Event Service In the most general case, four functions must be
provided to implement an event service:

1. The event define function
This function constructs an IP representing the event class defined by the event service and its
actual parameters. It is also responsible for generating the reply sent back to the tool immediately
after it requested this service.

2. The instrumentation function
Some events can only be detected after certain manipulations have been done to the target system.
These manipulations are usually called instrumentation. An example is to insert trap instructions
into a target process’s code in order to detect that execution of this process reaches a given point
in the code. The instrumentation function is responsible for inserting and removing this kind
of instrumentation. When it is called depends on the setting of the event’s ’instrumentation’
attribute in the registry file. If ’instrumentation’ is set to ’on define’, inserting the instrumentation
is requested right after the event define function finished, while removing the instrumentation is
requested only when the IP is deleted. If ’instrumentation’ is set to ’on enable’, instrumentation is
requested to be inserted whenever the IP is enabled, and removed again whenever the IP is disabled
or deleted. Thus, the setting of ’instrumentation’ is determined by a trade-off between the cost of
inserting/removing the instrumentation and the cost of unnecessarily executing it.

3. The filter function
As explained above, filters are used to derive more concrete event classes from more general ones.
The filter function is called whenever an event matching the more general event class is detected.
The filter then has to determine whether the event matches one or more of the more concrete event
classes. This decision is usually based on the values of event context parameters, but can also be
based on other information on the target system that is acquired by the filter itself. The filter then
calls ocm_evmgmt_ip_exec for those of its child IPs that representing event classes matched by the
processed event.

4. The event delete function
This is a callback that is invoked just before an IP is deleted from the IP tree. Its task is to perform
additional cleanup, such as freeing data pointed to by the IP’s usrdata pointer.

These functions must not be directly called from extensions, they are invoked only by the monitoring
system’s event management infrastructure.

The Event Define Function

Ocm_ip ocm_event_define_<service_function>(Ocm_expansion_context context,

Omis_event_hints hints,

Omis_service_result *result,

<service_parameters>);

cg-wp3.3-ocmg-devguide PUBLIC 78/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Here <service_function> is to be replaced by the value of the service’s ’service function’ attribute in the
registry file. The default for this value is the service name. However, a different name may be explicitly
specified in the registry file.

<service_parameters> denotes the sequence of the service’s input parameters, mapped to C parameters
as described in Section 10.1.1. When automatic token conversion is disabled in the registry file, the
parameters passed to the function will be an exact copy of the service’s parameters. Otherwise, the
token list (or single token) argument defining the objects the service should work on is converted to the
requested token class before it is passed to this function.

The context parameter specifies the internal execution context of the OCM-G, which among others
contains an identifier of the tool that requested execution of this service. The context will usually be
passed on to other services or to token conversion and access routines.

The parameter hints is reserved for future use. It is intended to be used to optimize event detection
and/or filtering. At the moment, it is not set to any meaningful value.

The function must return a valid IP, if processing was successful for at least one object, or NULL, processing
failed completely. There are several alternatives to get the IP to be returned:

• The function may call another event service function to get a parent IP representing an event class
that includes the current class. It then may add a filter to this IP and generate a new IP with this
filter as its parent filter. In this case, the filter only determines whether or not that IP should be
executed.

• It is also possible to get the parent IP and install the filter only once (when the event define
function is called for the first time), but still generate a new IP with every call. In this case, it
must maintain some data structure that allows the filter to determine which of these IPs must be
executed. Although more complex to implement, this strategy can increase efficiency, since the
number of filter executions is reduced.

• An already existing IP can be reused, provided that it represents exactly the same event class.

• The function may return a new root IP. In this case, the service’s implementation itself must ensure
that the IP is executed whenever an event matching the requested event class occurs.

Of course, also mixtures of these alternatives can be implemented. Note that this function should not
perform any instrumentation of the target system, as this is done in the instrumentation function.

When a processing error occurred, the function must assign a dynamically allocated array of Omis_object_result
structures to *result containing the error message(s) according to the rules outlined in Section 4.3. If
the function can not allocate the result structure, it should return NULL and set *result to NULL, which
indicates an out-of-memory condition.

The Instrumentation Function (No Automatic Token Conversion)

int ocm_instrument_<instrument_function>(Ocm_expansion_context context,

Omis_event_hints hints,

Ocm_ip ip,

Ocm_bool insert,

Omis_service_result *result,

<service_parameters>);

<instrument_function> is the value of the instrument function attribute in the registry file. context,
hints, result, and <service_parameters> have the same meaning as with the event define function.
ip specifies the IP for which instrumentation has to be inserted (if insert == True) or removed (if
insert == False).

cg-wp3.3-ocmg-devguide PUBLIC 79/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

The function will always be called with an exact copy of the event service’s parameter list. It is the
responsibility of the programmer to ensure that the token (or token list) specifying the objects to be
monitored by the event service is properly converted to figure out which objects actually have to be
(un)instrumented. Since the semantics of OMIS dictates that token lists are evaluated dynamically, the
programmer must also account for the fact that the result of this conversion may change with time (e.g.
due to objects being attached or detached by the tool). Thus, callbacks handling these changes should
be installed using the dynamic token conversion function described in Section 10.2.1.3.

The function must return a value ≥ 0 if completely successful, otherwise, it must return a value < 0
and assign a dynamically allocated array of Omis_object_result structures to *result containing the
error message(s) according to the rules outlined in Section 4.3. If the function can not allocate the result
structure, it should set *result to NULL, which indicates an out-of-memory condition.

The Instrumentation Function (Automatic Token Conversion)

Omis_status ocm_instrument_<instrument_function>(Ocm_expansion_context context,

Omis_event_hints hints,

Ocm_ip ip,

Ocm_bool insert,

char **result,

<service_parameters>);

<instrument_function> is the value of the instrument function attribute in the registry file. context

and hints have the same meaning as with the event define function. ip specifies the IP for which
instrumentation has to be inserted (if insert == True) or removed (if insert == False).

<service_parameters> denotes the sequence of the service’s input parameters, mapped to C parameters
as described in Section 10.1.1, with the parameter specified by the ’localize arg’ attribute in the registry
file handled in a special way. At its parameter position, always a single token will be passed (even
if the service itself accepts a token list). The type of this token will always reflect the type defined
in the ’auto convert to’ attribute in the registry file. The monitoring system’s event management will
automatically take care of objects that must be (un)instrumented due to changes in the conversion result
of the object list passed to the service, or due to enabling or disabling of the IP. The function is called
once for each single object that needs to (un)instrumented.

The function’s return value must be the status for the processed object. If this status indicates an error,
*result must be set to a dynamically allocated error description. Setting *result to to NULL indicates
an out-of-memory condition.

The Filter Function

typedef Ocm_any_val Ocm_ecp_val;

int ocm_filter_<filter_function>(Ocm_evmgmt_context context,

int num_ips,

const Ocm_ip ips[],

int num_ecps,

const Ocm_ecp_val ecps[],

void *param);

After a filter has been added to an IP using ocm_evmgmt_ip_filter_add, the filter function is called
whenever an event matching this IP’s event class is detected and at least one of the filter’s child IPs is
enabled. The task of the filter function is to analyze the event context parameters it receives in the ecps

array of length num_ecps and maybe also other state of the target system. Based on this information,

cg-wp3.3-ocmg-devguide PUBLIC 80/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

the filter function must decide which of its child IPs, which are passed to it in the ips array (of length
num_ips should be processed. To do so, the filter might use information stored in these IPs’ usrdata
components. The filter may also copy and extend/modify the event context parameters to be passed to
its child IPs. Once the IPs to be executed are determined, the filter must call ocm_evmgmt_ip_exec to
execute them.

The event context parameters are stored in the following way: ecps[1] ... ecps[5] contain the values of
the general event context parameters, i.e. node, proc, thread, time, and csr. ecps[0] is reserved for
internal use. The elements ecps[6] ... contain the service specific event context parameters of the event
service used to create the filter’s parent IP. The order in which they are stored corresponds to the order
of their definition in the registry file.

The param argument is set identical to the value passed to ocm_evmgmt_ip_filter_add when adding the
filter. This parameter is useful, if the same filter function is added to several IPs.

context is a pointer to an implementation dependent data structure that is used by the monitoring sys-
tem’s event management to pass around context information when traversing the IP tree. This parameter
should be passed to ocm_evmgmt_ip_exec without modification.

The return value of the filter must be ≥ 0, unless a processing error has been occurred.

The Event Delete Function

void ocm_event_delete_proc_control(Ocm_ip ip,

Ocm_bool deleting_filter);

This function is called just before an IP generated by the event define function is deleted by the monitoring
system, since it is no longer needed. If deleting_filter is True, this indicates that also the IP’s parent
filter has been removed, since it no longer has any child IPs and thus is not needed any longer.

An event delete function is usually necessary for two purposes: freeing any data structures referenced
by the IP’s usrdata component and updating any static data structures used by the event service’s
implementation. The function must not free the IP or the filter itself.

An example A complete example of an event service implementation is provided in the OCM-G source
code in the file src/Monitor/OCM/SERVICES/EXAMPLEEXT/example event.c.

10.1.4.5 Implementing Custom Distribution and Reply Assembly

As explained in the previous paragraphs, the OCM-G automatically distributes services to the proper
local monitors, based on the attributes specified in the registry file. In some cases, it may be necessary to
define a non-standard way of distributing a request for a specific service. Likewise, it may be necessary
to combine the results from different local monitors in a special way. Thus, OCM-G provides a means to
define custom request distribution and reply assembly functions for a service.

Custom distribution functions are hardly ever needed. However, custom reply assembly functions are
more common, especially in combination with global objects. Here, the service reading the value of the
global object must provide a reply assembly function, which combines the results of the local nodes into
a global result.

Distribution Function A distribution function has the following prototype:

Omis_status

<name_of_distribution_function>(Ocm_expansion_context context,

const Ocm_service_desc *service,

Ocm_service_distribution *distrib,

char **result)

cg-wp3.3-ocmg-devguide PUBLIC 81/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Here service ist a description of the service request, including all its parameters, while distrib is a result
parameter which specifies, how the service should be distributed to different nodes.

The result argument and the function’s return value are used to return an error description in case of
processing errors.

In order to use a custom distribution function, the following attribute must be added to the service’s
entry in the registry file:

distribution_function = <name_of_distribution_function>;

Reply Assembly Function A reply assembly function has the following prototype:

Omis_status

<name_of_assembly_function>(int num_replies,

const Omis_service_result *replies,

Omis_service_result *result,

char **errmsg)

The parameter replies is an array containing all the service results from local monitors (num replies is
the length of the array). The function must analyze these replies and combine them into a single service
result for the whole service request and store it into result. This service result must be dynamically
allocated.

The result argument and the function’s return value are used to return an error description in case of
processing errors.

In order to use a custom reply assembly function, the following attribute must be added to the service’s
entry in the registry file:

assembly_function = <name_of_assembly_function>;

10.2 The C-Interface for Tokens

OMIS uses opaque identifiers, called tokens, to identify objects in the target system or the monitoring
system. In OCM-G, there is a data type Ocm obj token, which takes over this role. I.e., each object
is accessed via this data type. The internal structure of this data type should neither be known nor be
exploited by programmers writing extensions to the OCM-G. The only way to access tokens should be
the functions documented in Section 10.2.1. Section 10.2.2 explains how an extension can add tokens for
new object classes.

10.2.1 General Token Interface

10.2.1.1 Constructors and Destructors

The following functions create and destroy tokens. Note that these functions are not available in the
application context.

Ocm_obj_token ocm_obj_new(int mem_segment, const char *string,

unsigned int size);

cg-wp3.3-ocmg-devguide PUBLIC 82/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Creates a new (proxy) object1 of given size in the memory segment specified by mem segment. Pos-
sible values for mem segment are ocm mem global for the shared memory segment, which can be
accessed by both the local monitor and the monitor modules in the local application processes, and
OCM MEM PRIVATE for the private memory of the local monitor.

The parameter string specifies the string representation, which the resulting token should have. Note
that this representation must obey the rules for token strings defined in the OMIS document. In addition,
the string must be globally unique, i.e., there must not be two tokens with the same token string inside
one instance of the OCM-G.

The function returns a token for the newly created (proxy) object. The data area (of size size) allocated
for the object is initialized with zeroes. The function ocm obj token deref() can be used to get a
pointer to this data area.

On error, the function returns NULL.

int ocm_obj_delete_when_unreferenced(Ocm_obj_token token);

Deletes the object referenced by the given token. A deleted object is no longer accounted for in the
ocm obj token find ...() functions. The actual deletion of the object’s storage is delayed until there
are no more tokens referencing the object in order to avoid dangling references. Note that the token itself
is not deleted by this function. Use ocm obj token delete() for this purpose.

The return value is < 0, if and only if an error occurred.

Ocm_obj_token ocm_obj_token_new(int mem_segment, const char *string);

Returns the token of the object referenced by the token string (as used in the OMIS interface) given in
string. If a local (proxy) object matching the given string exists, a token referencing this object will be
returned. It can be used to get a pointer to the object’s data via the function ocm obj token deref().
If no local (proxy) object exists, a new object token without any referenced object will be created. This
token will not (and will never) reference any object on the local node. However, it can be inserted into
parameter lists sent to other nodes. The token will be allocated in the memory given by mem segment.
Note that a request to allocating the token in shared memory when the referenced object is allocated in
local memory is an error, since this would prevent the token from being dereferenced in the application
context.

On error, the function returns NULL.

Ocm_obj_token ocm_obj_token_dup(int mem_segment, const Ocm_obj_token token);

Duplicates the given token. Note that only the token is duplicated, not the referenced (proxy) object.

On error, the function returns NULL.

int ocm_obj_token_delete(Ocm_obj_token token);

Deletes the specified token. Note that only the token is deleted, not the referenced (proxy) object. The
object itself is only deleted if ocm obj delete when unreferenced() has been previously called and
this is the last token referencing the object.

The return value is < 0, if and only if an error occurred.

1We write (proxy) object, since the function either can create a new object inside the monitoring system (e.g. a counter),
or a proxy object representing an object of the traget system (e.g. a node or application process).

cg-wp3.3-ocmg-devguide PUBLIC 83/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Ocm_obj_token *ocm_obj_token_array_dup(unsigned int len,

const Ocm_obj_token token_ary[]);

Duplicates an array of tokens. The function returns a dynamically allocated array of size len. Each ele-
ment of the array is a copy of the corresponding element of token ary, created via ocm obj token dup().

On error, the function returns NULL.

int ocm_obj_token_array_delete(unsigned int len, Ocm_obj_token token_ary[]);

Deletes each token in the array token ary of length len by calling ocm obj token delete().

The return value is < 0, if and only if an error occurred.

10.2.1.2 Access Functions

The following functions are available in any execution context.

const char *ocm_obj_token_string(Ocm_obj_token token);

Returns the string representation of the given token, i.e. the representation used in OMIS requests and
replies. The string returned must not be altered or freed. This function does not dereference the token,
i.e. it does not require that the token actually references a (proxy) object. The function never returns
NULL.

Ocm_bool ocm_obj_token_is_equal(Ocm_obj_token t1, Ocm_obj_token t2);

Compares the two tokens t1 and t2 without referencing them. Returns true, if and only if the two
tokens are equal, i.e. have the same string representation.

Ocm_bool ocm_obj_token_has_type(const Ocm_obj_token token, const char *type);

Returns true, if and only if the token belongs to the object class specified by type. The type is specified
by the token prefix defined in the OMIS document (e.g., p for processes).

Ocm_bool ocm_obj_token_is_undefined(const Ocm_obj_token token);

Returns true, if and only if the token is an undefined token or NULL. This function is actually imple-
mented as a macro.

void *ocm_obj_token_deref(Ocm_obj_token token);

Dereferences the token, i.e., returns a pointer to the data area of the (proxy) object referenced by token.

On error, the function returns NULL.

cg-wp3.3-ocmg-devguide PUBLIC 84/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

10.2.1.3 Token Conversion Functions

The following two functions convert tokens from one type into the other. Please refer to the OMIS
document for more information on token conversion (localization and expansion).

Note that these functions are not available in the application context.

Ocm_obj_token *ocm_obj_token_convert(unsigned int len,

const Ocm_obj_token token_ary[],

Ocm_expansion_context context,

Ocm_bool check_attached,

const char *to_type_low,

const char *to_type_high,

int *num,

Omis_service_result *result);

Converts the array of tokens token ary of length len into an array of tokens, which all have a type
between to type low and to type high. The types are specified by the token prefix defined in the
OMIS document (e.g., p for processes). The value passed to context should be the same which the
service calling ocm obj token convert received as its context parameter. The function will return a
dynamically allocated array of tokens; the length of this array is returned in *num. The returned array
should be deleted with ocm obj token array delete().

If check attached is true, the function checks for each token whether it is attached, before trying to
convert it. If a token is not attached, an error reply is generated and stored in result. If check attached
is false, the tokens are converted independently of whether they are attached or not.

On severe errors, the function returns NULL. If an error occurs only during the conversion of some tokens,
an error reply is returned in result. This reply should be appended to the service’s reply.

Ocm_obj_token *

ocm_obj_token_dynamic_convert(unsigned int len,

const Ocm_obj_token token_ary[],

int tool_id,

Ocm_bool check_attached,

const char *to_type_low,

const char *to_type_high,

Ocm_obj_token_watch_callback callback,

void *param,

int *num,

Omis_service_result *result,

Ocm_obj_token_watch_id *watch_id);

This function works like ocm obj token convert(), with the following addition: Once the function is
called, it remembers the requested conversion and calls the specified callback whenever the conversion
changes. The prototype of the callback function is

typedef int (*Ocm_obj_token_watch_callback)(const Ocm_obj_token token,

Ocm_bool added,

void *param);

cg-wp3.3-ocmg-devguide PUBLIC 85/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

When the callback is called, the arguments token and added indicate that a specific token should be
added to the conversion result (added = true) or removed from the result (added = false). The param
argument is initialized with the value passed to the param argument of ocm obj token dynamic convert().

The watch id returned by ocm obj token dynamic convert() can be used to remove the callback
again (see below).

Note that instead of a context argument, this function just receives a tool ID. The value passed to
tool id should be context.tool id.

int ocm_obj_token_watch_callback_remove(Ocm_obj_token_watch_id id);

This function allows to remove the conversion callback installed via ocm obj token dynamic convert().
The value passed to id must be the value returned by ocm obj token dynamic convert() via the
watch id parameter. The return value is < 0, if and only if an error occurred.

10.2.1.4 Attaching and Detaching

As explained int the OMIS document, a tool can attach to and detach from objects in order to define its
scope of interest. The following two functions provide this functionality. Note that these functions are
not available in the application context.

int ocm_obj_token_attach(Ocm_obj_token token, int tool_id);

Attaches the tool identified by tool id to the object identified by token. The tool id can be extracted
from a Ocm expansion context context variable via the field name tool id, i.e. context.tool id.
The return value is < 0, if and only if an error occurred.

int ocm_obj_token_attach(Ocm_obj_token token, int tool_id);

Detaches the tool identified by tool id from the object identified by token. The tool id can be extracted
from a Ocm expansion context context variable via the field name tool id, i.e. context.tool id.
The return value is < 0, if and only if an error occurred.

10.2.1.5 Searching and Finding

The following functions can be used to search for (proxy) objects with certain properties. Note that these
functions are not available in the application context.

Ocm_obj_token ocm_obj_token_find_one(const char *token_type,

Ocm_bool (*predicate)(Ocm_obj_token tok,

const void *param),

const void *param);

Searches all objects on the local node, which have a type specified by token type for one that fulfills
the given predicate and return its token. The type is specified by the token prefix defined in the OMIS
document (e.g., p for processes). The predicate is specified as a function which receives a token and
the value of the param argument passed to ocm obj token find one(). A NULL predicate always
evaluates to True. On error, or if no matching token is found, the function returns NULL.

cg-wp3.3-ocmg-devguide PUBLIC 86/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Ocm_obj_token *ocm_obj_token_find_all(const char *token_type,

Ocm_bool (*predicate)(Ocm_obj_token tok,

const void *param),

const void *param,

int *num)

Like ocm obj token find one(), with the difference that all matching tokens are returned in a dynam-
ically allocated array. The size of this array is returned via num. On error, the function returns NULL.
If no matching tokens are found, the function returns non-NULL and num is set to 0. The returned
array should be deleted with ocm obj token array delete().

10.2.2 Adding New Tokens

An OCM-G extension can add new token classes for monitor objects to the OCM-G. The following
sections explain how this is achieved.

10.2.2.1 The Registry File

Like new services, new token classes must be declared in the registry file. The syntax for these entries is
as follows:

token entry ::= ’token’ token name opt attributes ’;’
token name ::= identifier

See Section 10.1.4.1 for the syntax of opt attributes. Table 10.4 documents the available attributes and
thein meaning.

10.2.2.2 Implementing Tokens

In order to implement a new token type, up to four functions need to be implemented.

The Localization Function This function must be provided for all local tokens which should be
subject to the OMIS token conversion. The function has the following prototype:

Ocm_obj_token ocm_obj_token_<token-type>localize(Ocm_obj_token token,

const char *to_type);

Here, <token-type> denotes the token type, specified by the token prefix defined in the OMIS document
(e.g., p for processes). If a localization function is provided, this prefix must also be assigned to the
’localize function’ attribute in the registry file.

The parameter token receives the token of the object which should be localized. In the description below,
we denote this object with O. The parameter to type specifies the type of the token which should be
returned. The token type is specified by the token prefix defined in the OMIS document. The OCM-Gwill
call this function only with the following values for to type:

• ’s ’: In this case, the function must return the token of the site where O resides.

• ’n ’: In this case, the function must return the token of the node where O resides.

• Prefix corresponding to the immediate parent of the token in the OMIS object hierarchy: In this
case, the function must return the token of the immediate parent object of O.

cg-wp3.3-ocmg-devguide PUBLIC 87/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Attribute Values Description

’class’ ’local’
’global’
’array of’ identifier

Objects can either be local, i.e., available only on a
single node, or global, i.e., available on all nodes. In
addition, arrays of objects can be defined. In this
case, identifier is the token type of the array element,
specified by its prefix. Arrays are always global.

’parent’ identifier
(default: ’u ’)

Specifies the token type of the object where objects of
this type are contained in, i.e., the type of the imme-
diated parent in the token hierarchy (see OMIS doc-
ument). This attribut is only meaningful for objects
with ’class = local’.

’attachable’ ’false’
’true’

Specifies whether the objects should be attachable. If
this attribute is set to ’false’, the tokens can not and
need not be attached by a tool.

’auto attach’ ’false’
’true’

Specifies whether the objects should be attached au-
tomatically when they are created. This attribute is
ignored when ’attachable’ is ’false’.

’localize function’ identifier
(default: ’NULL’)

Specifies the localization function for these objects.
See Sect. 10.2.2.2.

’attach function’ identifier
(default: ’NULL’)

Specifies the name of a function which is called
whenever an object is attached or detached. See
Sect. 10.2.2.2.

’delete function’ identifier
(default: ’NULL’)

Specifies the name of a function which is called when-
ever an object is deleted. See Sect. 10.2.2.2.

’constructor’ identifier
(default: ’NULL’)

Specifies the name of a function which constructs the
local parts of a global object and/or the elements of
an array. See Sect. 10.2.2.2.

Table 10.4: Token attributes in the registry file

cg-wp3.3-ocmg-devguide PUBLIC 88/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

The Attach Function This function is optional: the mechanism of attaching and detaching objects
is provided by the OCM-G core. The only purpose of this function is to provide a notification when an
object was attached or detached, in case the object implementation wants to perform some additional
actions.

The function has the following prototype:

int ocm_obj_token_<token-type>attach(Ocm_obj_token token,

int tool_id,

Ocm_bool attach);

Here, <token-type> denotes the token type, specified by the token prefix defined in the OMIS document
(e.g., p for processes). If an attach function is provided, this prefix must also be assigned to the
’attach function’ attribute in the registry file.

The argument token receives the token of the object being attached (attach = true) or detached
(attach = false). The argument tool id indicates the ID of the tool that attached or detached the
object.

The function should return a value ≥ 0 if and only if an error occurred.

The Delete Function This function is optional: the mechanism of deleting objects is provided by the
OCM-G core. The only purpose of this function is to provide a notification before the object’s data is
deleted. Typically, the function will perform some additional cleanup and/or will free some memory, to
which pointers have been stored in the object’s data area (see ocm obj new()). Note that this function
is called only when an object is about to be deleted, not when a token is deleted.

The function has the following prototype:

int ocm_obj_token_<token-type>delete(Ocm_obj_token token);

Here, <token-type> denotes the token type, specified by the token prefix defined in the OMIS document
(e.g., p for processes). If an attach function is provided, this prefix must also be assigned to the
’delete function’ attribute in the registry file.

The argument token receives the token of the object, which is about to be deleted.

The function should return a value ≥ 0 if and only if an error occurred.

The Constructor A constructor function must be implemented for tokens representing global objects
or arrays of objects. For tokens of these types, the implementation consists of two parts:

• One part deals with the global aspects. This part is automatically generated from the information
of the registry file. In particular, a function

Ocm_obj_token ocm_obj_<token-type>new(Omis_status *status, char **result);

is generated. This function can and should be used to create a new global object or a new array.
Here, <token-type> denotes the token type (token prefix) specified in the registry file.

• The other part deals with local aspects, i.e., the local parts of a global object, or the elements of
an array. This part of the implementation must be provided by the programmer, i.e., the token
implementation must explicitly provide a constructor as outlined below.

The constructor must create:

cg-wp3.3-ocmg-devguide PUBLIC 89/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

• the local part of a global object, in case of tokens which have class = global specified in the
registry file. The type of the local object is the same as

• a (local) element of an array, in case of tokens which have class = array of type specified in the
registry file. Here type is the object of the token which must be created by the constructor.

The constructor function has the following protoype:

Ocm_obj_token ocm_obj_local_<token-type>new(const char *tok_str,

Omis_status *status,

char **result);

Here, <token-type> denotes the token type (token prefix) specified in the registry file. This prefix must
also be assigned to the ’constructor’ attribute in the registry file.

The constructor must create an object of the appropriate type, i.e., the <token-type> in case of a global
object, or the element type in case of an array object. The object should be created by calling the
ocm obj new(ocm mem global, tok str, size), where size is the size of the data area which should
be allocated for the object.

If no error occurs, the function must return the token returned by ocm obj new(). In addition, *status
should be set to OMIS OK. The result parameter should not be set in this case.

In case of an error, the function must return NULL, *status should be set to the appropriate error code,
and *result should be assigned with a dynamically allocated string providing an error description.

10.3 Complete Example Code for an Extension

A complete example of an OCM-G extension can be found in the OCM-G source code in the directory

src/Monitor/OCM/SERVICES/EXAMPLEEXT

cg-wp3.3-ocmg-devguide PUBLIC 90/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

Bibliography

[1] OMIS – On-line Monitoring Interface Specification. Version 2.0. Lehrstuhl für Rechnertechnik und
Rechnerorganisation Institut für Informatik (LRR-TUM), Technische Universität München.
http://wwwbode.informatik.tu-muenchen.de/~omis

cg-wp3.3-ocmg-devguide PUBLIC 91/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

11 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software–to make sure the software is free for all its users. This General Public License applies to
most of the Free Software Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

cg-wp3.3-ocmg-devguide PUBLIC 92/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

GNU GENERAL PUBLIC LICENSE TERMS AND CONDI-

TIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”,
below, refers to any such program or work, and a ”work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term ”modification”.) Each licensee
is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

cg-wp3.3-ocmg-devguide PUBLIC 93/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not bring
the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient au-
tomatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recip-
ients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions

cg-wp3.3-ocmg-devguide PUBLIC 94/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and ”any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution con-
ditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

cg-wp3.3-ocmg-devguide PUBLIC 95/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C)
19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and
you are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
”copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’
(which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

cg-wp3.3-ocmg-devguide PUBLIC 96/97

CrossGrid Developer’s Guide – Task 3.3.1: OCM-G

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

cg-wp3.3-ocmg-devguide PUBLIC 97/97

