

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 1 / 56

D E V E L O P E R M A N U A L

G - P M

 WP2.4

Document Filename: CG2.4.1-v1.2-CYF-G-PMDeveloperManual.doc

Work package: WP2.4

Partner(s): CYFRONET, TUM

Lead Partner: CYFRONET

Config ID: CG2.4.1-v1.2-CYF-G-PMDeveloperManual

Document classification: PUBLIC

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 2 / 56

Document Log

Version Date Summary of changes Author

0.1 22/08/2004 Adaptation from earlier prototype
templates Piotr Nowakowski

0.3 29/08/2004 Inclusion of TB comments, formatting Ariel Garcia, Piotr Nowakowski

1.0 20/12/2004 First draft of G-PM docs Wlodzimierz Funika, Tomasz Arodz,
Marcin Kurdziel

1.1 22/12/2004 Inclusion of HLAC docs Hamza Mehammed

05/01/2005 Updates and corrections Roland Wismueller 1.2
26/01/2005 Verified by the QE Robert Pajak

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 3 / 56

CONTENTS
COPYRIGHT NOTICE ... 4

1. INTRODUCTION... 5
1.1. ABBREVIATIONS AND ACRONYMS .. 5
1.2. REFERENCES AND SOURCE CODE ... 6

2. IMPLEMENTATION STRUCTURE ... 7
2.1. PRODUCT COMPONENT MODEL .. 7
2.2. DETAILED IMPLEMENTATION MODEL... 8

2.2.1. The measurement interface... 8
2.2.2. Performance Measurement component (PMC) class diagrams ... 20
2.2.3. The HLAC component ... 24
2.2.4. The class diagram of the UIVC component.. 47

3. PRODUCT TESTING .. 49
3.1. PMC... 49
3.2. HLAC .. 49

4. CONTACT INFORMATION AND CREDITS.. 50

5. GNU GENERAL PUBLIC LICENSE, VERSION 2, JUNE 1991 .. 51

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 4 / 56

COPYRIGHT NOTICE

Copyright (c) 2005 by ACC CYFRONET AGH, Krakow, Poland; AGH University
of Science and Technology, Krakow, Poland; Technische Universität München,
Germany; Universität Siegen, Germany. All rights reserved.

Use of this product is subject to the terms and licenses stated in the GPL license agreement. Please
refer to Section 5 for details.

This research is partly funded by the European Commission IST-2001-32243 Project “CrossGrid”.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 5 / 56

1. INTRODUCTION
The G-PM is the CrossGrid performance monitoring tool for parallel grid applications. Its purpose is
to monitor run-time behaviour of applications and detect possible performance bottleneck. The tool
was designed to provide the user with performance data in an on-line fashion. Consequently it is not
necessary to wait for the end of application's execution in order to analyse its performance. Rather, the
analysis is being performed constantly and the user can react to improper application behaviour as
soon as it occurs. This is particularly important in case of applications that have long execution times,
which are common in the grid environment. The tool works in X-Windows environment and provides
convenient graphical interface for defining measurement and visualizing of performance data.

One of the most important features of the G-PM is its flexibility. The tool can be customized to
support a huge range of monitoring scenarios. First, the G-PM provides a number of predefined
performance metrics for MPI applications. New metrics can be added by the user with an aid of the
dedicated Performance Measurement Specification Language (PMSL). The PMSL also provides a
probe mechanism that can be used to monitor control flow during application execution and to retrieve
content of internal application variables. These features are especially useful for the application
developer. Using them the developer can design monitoring scenarios usefully in detection of origins
of possible performance bottlenecks. Finally, the measurement of both predefined and PMSL-based
metrics can be narrowed to any subset of computing sites, nodes, processes or application functions.
The measurement of the PMSL metrics can be further narrowed to intervals in application execution
that are specified by enclosing probes.

The G-PM monitors the application by appropriate programming of another CrossGrid service, i.e.
OCM-G. The main task of OCM-G is to perform low-level monitoring of application in a distributed
way. Also, the initial processing of performance measurement results (e.g. partial aggregation of
measured values) is preformed by OCM-G. This approach significantly reduces the computational
overhead associated with the monitoring, thus minimizing the influence of the G-PM on the grid
application behaviour. Furthermore, it reduces the overhead on the user workstation, which is
important in case of monitoring large number of processes.

The main novelty of our approach is the combination of on-line monitoring with the support for user-
defined, application specific performance metrics. Other on-line monitoring tools either focus on
hardware infrastructure (e.g. Network Weather Service) or does not provide user-defined metrics
whose functionality is comparable to the one of G-PM (e.g. GRM, Paradyn, Autopilot, TAU).

1.1. ABBREVIATIONS AND ACRONYMS
G-PM The CrossGrid performance analysis tool
HLAC High Level Analysis Component
OCM-G OMIS Compliant Monitoring system for the Grid
OMIS On-line Monitoring Interface Specification
PMC Performance Measurement Component
UIVC User Interface and Visualization Component
UML Unified Modelling Language

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 6 / 56

1.2. REFERENCES AND SOURCE CODE
The source code of the tool is available at the CrossGrid CVS at:
https://savannah.fzk.de/cgi-bin/viewcvs.cgi/crossgrid/crossgrid/wp2/wp2_4-perf/wp2_4_1-perfmon/
The G-PM classes are located in the src subdirectory within the bundle and is arranged in the directory
tree structure as follows:
src – source code and header files

uivc – source and header files for the UIVC classes
pmc – source and header files for the PMC classes
hlac – source and header files for the HLAC classes

dag – source and header files for the intermediate representation of HLAC metrics
dfn – source and header files for the data flow graphs used to evaluate HLAC metrics
ocm – source and header files for an OCM-G extension supporting distributed evaluation

of HLAC metrics
 support – source and header files for the classes that are shared among the above modules:

include – header files for the support classes
measurement – header files for the measurement interface classes
auxilary – header files for the auxiliary classes

measurement – source code files for the measurement interface classes
auxilary – source code for the auxiliary classes

ocmg-dummy – source code and header files for a simulation of OCM-G used for testing
doc – user’s manual and installation manual
man – manual pages
test – input files and scripts used for testing
apidoc – automatically generated documentation
gtk+extra-0.99.17 – a copy of the GTK+extra library source code

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 7 / 56

2. IMPLEMENTATION STRUCTURE

2.1. PRODUCT COMPONENT MODEL
The module decomposition of G-PM is shown in Figure 2-1:

- UIVC implements the user interface and the visualizers for performance data,
- HLAC implements configurable (user-definable) performance metrics,
- PCM implements standard performance metrics,
- OCM-G provides application related monitoring services and also interfaces to CrossGrid

components that provide infrastructure related performance data as well as benchmark data.

Interface

Interface
Measurement

Measurement

OCM-G
Interface

UIVC

HLAC

OCM-G

PMC

Figure 2-1 Module decomposition of the G-PM tool

There are two major interfaces between these modules:

- Measurement Interface:
This interface allows to define performance measurements and to read their results. As can be
seen from Figure 2-1, both the HLAC and the PMC provide the same interface.

- OCM-G Interface:
The interface to the monitoring system is an external interface to Task 3.3. It is based on OMIS.

In the following section, we provide an overview on the different classes used in the Measurement
Interface and their interrelations.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 8 / 56

2.2. DETAILED IMPLEMENTATION MODEL
The components and interfaces of the G-PM, as specified above, are discussed in this section.

2.2.1. The measurement interface

2.2.1.1. Main classes for defining measurements

There are three main classes related to a performance measurement: MeasurementSpec,
ActiveMeasurement and Metrics. These classes along with their relationships with other G-PM classes
are depicted in Figure 2.2. These classes are described in more details below. The description focuses
on the external interface which can be used to define and read measurements. It does not include
internal methods which are only used for implementing the measurements.

The MeasurementSpec class is a definition of a single measurement. It includes:

1. Metrics definition represented by an instance of the Metrics class.
2. List of measured (involved) objects along with an optional list of partner objects. Both are

represented by an instance of AppObjectList class.
3. List of measured code regions represented by an instance of RegionList class.

The MeasurementSpec class is used, with help of the Metrics class, to create instances of the
ActiveMeasurement class, which represent an ongoing measurement process.

Instances of the ActiveMeasurement class represent actual measurements that are performed by the
monitoring system. The class provides a functionality to create, start, stop and destroy a measurement,
in general with help of a corresponding Metrics class. Each instance of the ActiveMeasurement class
contains a MeasurementSpec object that defines the measurement, and via this class also a pointer to a
Metrics object defining the data to be measured. Measurements performed by ActiveMeasurement
instances are mutually independent. In particular this applies to the instances that refer to identical
MeasurementSpec objects.

The third of the above-mentioned classes, the Metrics class describes the properties to be measured. It
does not define the involved objects or measured code regions, but is responsible for defining the way
in which the data should be measured. The definition of metrics can be hierarchical, that is a single
metrics can be defined as a set of other submetrics. In addition the Metrics class itself contains a static
class variable that represents a list of all top-level metrics that are available in the G-PM. A simple
metrics is for example: communication volume, computation time etc. In general, since a Metrics-
derived class knows how to measure and an ActiveMeasurement-derived class contains the monitoring
service’s object identifiers associated with that specific measurement, for each class inherited from
Metrics, there should exist a corresponding class inherited from ActiveMeasurement, i.e. these classes
always come in pairs.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 9 / 56

ActiveMeasurement

start()
stop()
<<virtual>> read()
getMeasurementSpec()
getUserData()
getMonAccessInfo()

AppObjectList RegionList

Metrics
$ metricsList : MetricsList

<<virtual>> measure()
<<virtual>> read()
getSubmetrics()
getName()
getDescription()
getUnit()
getDerivUnit()
usesObjects()
applicableObjects()
usesPartners()
applicablePartners()
usesRegions()
definesVirtualTime()
IsComputedOnHost()
isEditable()
isSampled()
<<static>> getTopMetrics()
<<static>> getEditableMetrics()

MeasurementSpec

measu re(spec : Measu rem entSp ec, callback : M ea surementCB) : ActiveMeasuremen t
setM et rics(metrics : Metrics) : vo id
setOb jects(obj ects : AppObjectList) : void
setPartners(partners : App Obj ectLi st) : vo id
setRegi ons(reg ions : Reg ionLi st) : vo id
setSummaryMode (sMode : Sum maryMode) : void
setInte gra tio nMod e(i Mode : Integra tionMode) : void
setT imeMode (tM od e : Tim eMo de) : void
getMetri cs() : M etrics
getObjects() : AppObj ectLi st
getPartne rs() : AppObjectList
getLo ca tions() : Locat ion List
getSum maryMode() : SummaryMode
getTim eM ode() : TimeMode
getIntegrat ionMode() : Integrati onMo de

1

0..*

1

0..*

2

1..*

2

1..*

1

1..*

1

1..*

1

0..*

1

0..*

Figure 2.2 Class diagrams of performance measurement-related classes MeasurementSpec,

ActiveMeasurement and Metrics

2.2.1.1.1. Metrics

An object of (an implementation class derived from) this abstract base class represents a metrics, i.e. a
property that can be measured. The metrics just defines what is to be measured, it does not define

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 10 / 56

where or when to measure. The latter is controlled by additional parameters which must be supplied
when an actual measurement is defined.

There are two very different ways to measure a performance value:
a. The value may be sampled from some source whenever the measurement is read. This situation is

typical for infrastructure related metrics. For example, consider the CPU load of a node, which
may be sampled from the OS.

b. The value may be determined by monitoring events, which occur whenever the value changes.
This is typical for application related metrics. E.g. the amount of communication can be
determined by monitoring all “message send” events and summing up the lengths of the messages.

In case b. we have an exact integral and thus, we can exactly determine the value of the metrics. In
case a. we only have a current value. We call these metrics sampled metrics.

In application-specific metrics, we also want to measure the value of a metrics for an interval of time
bounded by the execution of special procedure calls, called probes (i.e. generating special events) in
the application. Probes are usually used to constrain the beginning and end of a code region. A typical
example of this scenario is measuring the amount of communication between a user’s request and the
application’s reply.

Metrics provides the following methods:

1. string getName() const

Returns the name of the metrics. The only purpose of this name is that the user of G-PM can
identify the metrics.

2. string getDesc() const
Returns a concise description of this metrics, i.e. its documentation. Like the name, this
description is intended to be displayed to the user of G-PM.

3. string getIntegralUnit() const
4. string getNormalUnit() const

These methods return the unit (dimension) of the result of a measurement using this metrics.
There are two methods, since when a measurement is defined, a parameter allows to select either
the integral value of the metrics or the ‘normal’ value (i.e. the time derivative of the integral
value). E.g. for the “amount of data sent” metrics getIntegralUnit() might return the string
“KByte”, while getNormalUnit() might return “KByte/s”.
Rationale: This feature is needed to support the implementation of the user-defined metrics.

5. UseInfo usesObjects() const

Indicates whether the objects parameter can / must be used when defining a measurement based
on this metrics (c.f. Section 2.2.1.1.2). The result type of this method is an enumeration
consisting of three values:

REQUIRED The parameter must be specified.
POSSIBLE The parameter can be specified
NOT_APPLICABLE The parameter must not be specified

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 11 / 56

Rationale: Although the method defining a measurement will always receive the parameter (and
possibly ignore it), this information is needed for user guidance in the user interface: If the
parameter must be specified, the user must be forced to do so. If it must not be specified, the user
should not be given an opportunity to specify it.

6. int applicableObjects() const
The objects parameter of a measurement definition can have different types (c.f. Section
2.2.1.1.2). This method returns the allowed types for this metrics. The result type of this method
is a bitwise OR of the values: SYSTEM, SITE, NODE, PROCESS, FILE.
Rationale: Like usesObjects() this method is mainly included for user guidance in the user
interface.

7. UseInfo usesPartners() const
Like usesObjects(), however, this method refers to the partner objects of a measurement.

8. int applicablePartners() const
Like applicableObjects(), however, this method refers to the partner objects of a measurement.

9. UseInfo usesRegions() const
Like usesObjects(), however, this method refers to the regions parameter of a measurement.

10. int applicableSummaryMode() const

This method returns the summary modes which can be used for a measurement with this metrics.
The result is a bitwise OR of the values: SINGLE_MEASUREMENT, FOR_EACH_OBJECT,
FOR_EACH_PARTNER, FOR_EACH_OBJECT_AND_PARTNER (c.f. Section 2.2.1.1.2).

11. int applicableIntegrationMode() const

Returns the integration modes which can be used for a measurement with this metrics. The result
is a bitwise OR of the values: SINCE_START, SINCE_LAST_READ_DIVIDE_BY_TIME,
SINCE_START_DIVIDE_BY_TIME, SINCE_LAST_READ (c.f. Section 2.2.1.1.2).

12. bool definesVirtualTime() const

Returns True, if this metrics defines a virtual time. See Section 2.2.1.1.2 for an explanation of
this concept.

13. bool isEditable() const

Returns True, if the definition of this metrics can be edited by the user. In G-PM, this is the case
for the metrics defined by the HLAC.

14. MetricsList getSubMetrics() const

Since the number of different metrics may be quite high, metrics can be organized in a
hierarchical way. This method returns a list of all metrics that are direct children of a metrics in
this hierarchy.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 12 / 56

Rationale: We may have a metrics “delay in communication”. Its sub-metrics would e.g. be
“delay in sending”, “delay in receiving”, “delay in global operations”, etc. The metrics “delay in
sending” again could have sub-metrics like “delay in MPI_Bsend”, “delay in MPI_Isend”, etc.

15. bool isSampled() const

Returns True, if this metrics is based on sampling an instantaneous value, rather than computing
it from events in the target system.

16. static MetricsList getTopMetrics()

This static method returns the list of all top-level metrics (i.e. metrics which are not sub-metrics
of other metrics) known in the system.
Implementation Note: The constructor of class Metrics will insert the new object in a static list,
if it is a top-level metrics. This method just returns this list. Note that the constructor as well as
the static list are not part of the public interface!

17. static MetricsList getEditableMetrics()

This static method returns the list of all editable metrics (i.e. user-defined metrics) known in the
system.

18. static Metrics* findMetrics(string name)

This static method searches for a metrics with the given name and returns a pointer to it.

2.2.1.1.2. MeasurementSpec

This class comprises all data that is necessary to specify a measurement, i.e. the metrics to be
measured and all other parameters. It offers the following methods:

1. MeasurementSpec()
2. ~MeasurementSpec()

Constructor and destructor.

3. MeasurementSpec(const MeasurementSpec& from)
Copy constructor

4. MeasurementSpec& operator=(const MeasurementSpec& rhs)
Assignment operator

5. void setName(string measurementName)
6. string getName() const

Set and get the measurement name. The name can be arbitrary and has no influence whatsoever
on the measurement itself.
Rationale: The measurement name is provided solely for the user interface. It helps the user to
organize and remember his measurements.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 13 / 56

7. void setMetrics(Metrics& metrics)
8. Metrics* getMetrics() const

Set and get the metrics. The object will store a reference to the metrics object.
Rationale: Metrics are regarded as global, unchangeable objects. Thus, it doesn’t really make
sense to copy the metrics.

9. void setObjects(const AppObjectList& objects)
10. AppObjectList getObjects() const

Set and get the objects (sites, nodes, processes) where the measurement should be performed. An
empty list denotes the whole system. The list is copied by both methods.

11. void setPartners(const AppObjectList& partners)
12. AppObjectList getPartners() const

Set and get the partner objects (sites, nodes, processes, files) for a measurement. An empty list
denotes a wildcard, i.e. any partner object. The list is copied by both methods.
Rationale: A partner object can e.g. be used for metrics like “amount of communication”. When
a list of partners is specified, only the communication with these partners is taken into account
for the measurement.

13. void setRegions(const RegionList& regions)
14. RegionList getRegions() const

Set and get the code regions (modules, functions) where the measurement should be performed.
An empty list denotes the whole program. The list is copied by both methods.
Rationale: If a list of regions is specified, the measurement will be restricted to these code
regions. E.g. this allows measuring the “amount of communication” for a specific function in a
program.

15. void setSummaryMode(SummaryMode sMode)
16. SummaryMode getSummaryMode() const

The summary mode specifies to which extent measurement values should be summarized for the
different elements of the objects, partners and regions lists. SummaryMode is an enumeration
type containing the following values:

SINGLE_MEASUREMENT The result of the measurement is a single
value, which is the sum of the results for all
objects, partners and regions.

FOR_EACH_OBJECT The result is an array with one element for
each object. Each element is the sum of the
measurement results for all partners and
regions.

FOR_EACH_PARTNER The result is an array with one element for
each partner. Each element is the sum of the
measurement results for all objects and
regions.

FOR_EACH_OBJECT_AND_PARTNER The result is a two-dimensional array with one
element for each pair (object, partner). Each
element is the sum of the results for all
regions.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 14 / 56

For example, with the “amount of communication” metrics, SINGLE_MEASUREMENT will
result in the total amount of communication between the specified objects and their partners,
while FOR_EACH_OBJECT_AND_PARTNER will result in the communication matrix.

17. void setIntegrationMode(IntegrationMode iMode)
18. IntegrationMode getIntegrationMode() const

Set / get the integration mode. IntegrationMode is an enumeration with four values, which
encode the following (independent) choices:

i. whether the measurement interval is the definition interval (i.e. the time interval between
the definition of the measurement and the current read of the measurement) or the update
interval (i.e. the time interval between the last read of the measurement and the current
read)

ii. whether the measurement value should be divided by the length of the measurement
interval or not.

The enumeration values are:
SINCE_START: In this case, the result of the measurement is

an integral over time, starting with the start of
the measurement. E.g. for the 'amount of
communication' metrics, the result would be
the total number of bytes communicated since
the start of the measurement.

SINCE_LAST_READ_DIVIDE_BY_TIME: For this mode, the result is the difference
between the current integral value and the
integral value at the time of the previous
reading of the measurement, divided by the
time difference. E.g. for the 'amount of
communication' metrics, the result would be
the obtained communication bandwidth.

SINCE_START_DIVIDE_BY_TIME: In this mode, the returned value is the
aggregated value since the measurement was
started, divided by the length of the
measurement interval. I.e. the result is
something like a mean derivative.

SINCE_LAST_READ: In this mode, the result is the difference
between the current integral value and the
integral value at the time of the previous
reading of the measurement. It is useful only
for internal purposes (mostly for used-defined
metrics).

The explanation above assumes a metrics with isSampled() = False. For sampled metrics, the
integration mode should be ignored.
Rationale: This feature is mainly needed to support the implementation of the user-defined
metrics outlined in Section 2.2.3.

19. void setTimeMode(TimeMode tMode)
20. TimeMode getTimeMode() const

Set / get the time mode. TimeMode is an enumeration with the values REAL_TIME and
VIRTUAL_TIME.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 15 / 56

In REAL_TIME mode, when reading the measurement, the result(s) are the value(s) for the
current time (or for the interval between the time of the last read and the current time).
In VIRTUAL_TIME mode, the result of reading the measurement is a sequence of values, one for
each tick of the virtual time, since the last read operation. The virtual time ticks whenever an
event (which depends on the measured metrics) occurs in the monitored application. For metrics
that are computed from a start and an end event, usually the end event defines virtual time. The
virtual time then just is the number of executions of this end event. E.g. the “amount of
communication” metrics is computed by monitoring the beginning and end of each
communication call. A VIRTUAL_TIME measurement of this metrics thus results in the
sequence of message lengths for each communication call.
Rationale: The VIRTUAL_TIME mode has been introduced mainly for application-specific
metrics. It will be very useful to measure e.g. the amount of communication or the CPU time of
each single iteration of the application’s main loop, rather than providing only averaged values.

21. ActiveMeasurement* measure(MeasurementCB& callback)

Defines a measurement with the metrics and parameters stored in the MeasurementSpec object.
The method returns an ActiveMeasurement object that represents the ongoing measurement.
The callback parameter is a reference to an object implementing the interface
class MeasurementCB {
 virtual void processMeasurementResults(

ActiveMeasurement measurement,
ValueList values,
void *data) = 0;

 }

The method processMeasurementResults() of this object will be called when the results of the
measurement are available during or after a call to the read method of the returned
ActiveMeasurement object. For measurements in REAL_TIME mode, the ValueList passed to this
method always contains only one element. The data parameter passed to this method contains
the pointer passed to the data parameter of the ActiveMeasurement::read() method.
Implementation Notes:

a. This method calls a method ActiveMeasurement* Metrics::measure (MeasurementSpec&,
MeasurementCB&), which does all the work. This is necessary, since the knowledge on
how a measurement is implemented is encapsulated in the Metrics classes.

b. The MeasurementSpec object stored in the ActiveMeasurement object returned by this
method is a copy of the current object. Reason: The current object can be modified after a
measurement is defined. In this case, the information in the ActiveMeasurement object
would be inconsistent.

2.2.1.1.3. ActiveMeasurement

An object of (an implementation class derived from) this abstract base class is created whenever a
concrete measurement is defined. Thus, the object represents the ongoing measurement. Methods of
this object allow to manipulate (start / stop / delete) the measurement and to read its results.

The interface of ActiveMeasurement defines the following methods:

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 16 / 56

1. ~ActiveMeasurement()
This destructor not only deletes the object, but also deletes the measurement in the target (i.e. the
monitored application).
Note: there is no constructor in the interface, since the only way to create an ActiveMeasurement
object is via MeasurementSpec::measure ().

2. void start(bool flush)
Starts a measurement. When a measurement is defined, all necessary instrumentation is
performed in the target, i.e. in an object being monitored, however, the measurement is not yet
started. It is started only after the start method is called.
The flush parameter defines the buffering behaviour of the necessary communication with the
monitoring system. If set to True, all communication buffers are flushed before the method
returns.
Rationale: The separate start method results in a two-phase commit when defining
measurements. During the definition, all possible sources of errors are checked (esp. the
parameters of the measurement). If an error occurs, the definition can be deleted without any
effect. The start method itself normally can not result in errors.
Implementation Note: Somewhere we should store the exact information when a measurement
was started / stopped, since this information is needed for computing correct performance values.
This does not happen in the current implementation yet.

3. void stop(bool flush)
Stops a measurement. This is useful to temporarily disable measurements.
The flush parameter defines the buffering behavior of the necessary communication with the
monitoring system. If set to True, all communication buffers are flushed before the method
returns.
Implementation Note: As with start(), we should somewhere store the exact time.

4. void read(bool block, bool flush, void *data)
Read the results of a measurement. The results are not returned by this method. Rather, the
callback specified during the measurement definition is invoked when the results are available.
In this way, asynchronous receipt and processing of measurement results is possible.
The block parameter defines the blocking behavior of this method. If set to True, the method
blocks until all results have been passed to and processed by the callback. Otherwise, the method
returns immediately and the callback is called asynchronously at a later time. Note that until the
call to read is actually finished, further calls to this method have no effect other than probably
blocking until the read operation is finished.
The flush parameter defines the buffering behavior of the necessary communication with the
monitoring system. If set to True, all communication buffers are flushed before the method
returns.
The data parameter is an arbitrary pointer that is passed to the callback. It can be used to pass
context information to the callback.

5. MeasurementSpec* getMeasurementSpec()

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 17 / 56

Returns the measurement specification of this measurement, i.e. the metrics and all its
parameters used for defining the measurement. See Section 2.2.1.1.2 for a documentation of
MeasurementSpec.
Implementation Note: This method should really return either a copy of the MeasurementSpec
object or a const reference, since the object must not be changed!

6. bool getMonAccessInfo(MonAccessInfo& info) const

Returns information on whether and how the results of this measurement can be read from
within an OCM-G extension. The result is False, if the measurement result can not be read
within an OCM-G extension.
Rationale: This method is provided mainly for the HLAC, but may also be useful if the
Measurement Interface is used as an API for performance measurements. When measurement
values have to be combined with other information (e.g. other measurement values, or events
occurring in the monitored application), it is more efficient to combine the information near to
its source. I.e. if we have to combine to measurement values originating from the same compute
node, we should do this on that node. The OCM-G allows implementing such a scheme, because
it can be (dynamically) extended with tool-specific services. The method getMonAccessInfo()
will return the necessary information for such a service.

2.2.1.1.4. ActiveMeasurementList

This class implements a list of ActiveMeasurement objects. Besides the normal methods for list
classes, it also implements the methods start(), stop(), and read() of class ActiveMeasurements,
properly extended for lists of measurements. As far as possible, the implementation should ensure that
the measurements are started, stopped, or read at the same time.

2.2.1.2. Auxiliary classes

There are the following auxiliary classes used in the Measurement Interface: AppObject, FileObject,
TokenizedObject, Token, Region and Value. In addition the following classes are used to represent
lists: ActiveMeasurementList, MetricsList, AppObjectList, TokenList, LocationList, and ValueList. All
these classes along with their relationships are depicted in Figure 2.3.

The AppObject class is used to represent different application-related objects in G-PM. By its
subclasses, it can represent a disk file, a process, a host or a site. Additionally, the AppObject class
provides functionality to obtain the list of all available sites, the list of all nodes in a particular site (or
set of sites), and the list of all processes on a particular node (or set of nodes).

The FileObject is a class derived from AppObject. It is used to represent a single disk file.

The TokenizedObject is a class derived from AppObject. It is used to represent a monitoring service
object, i.e. tokens, such as a host identifier. It is an encapsulation of a token class to provide a
consistent interface to access both files and tokens as AppObjects.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 18 / 56

The Token class contains a single monitoring service object identifier. The available object types
include site, host, process and monitoring system conditional service request (CSR).

The Region class represents a continuous code region in a process executable. This region is specified
by its beginning and ending address. Usually, regions are used to represent functions or modules in the
process executable. For this reason, the Region class provides functionality to retrieve code regions of
all functions or modules in the process executable.

The Value class represents the result of a measurement. In general, all results are two dimensional
matrices although each dimension may contain just a single value, thus allowing for results that are
one dimensional arrays or single numbers. In addition, the Value class provides a functionality to
retrieve the timestamp of the beginning or end of the measurement and, if applicable, to retrieve the
virtual time that is associated with the measurement.

The ActiveMeasurementList, MetricsList, AppObjectList, TokenList, LocationList, and ValueList
classes are used to represent lists of objects of the following classes: ActiveMeasurement, Metrics,
AppObject, Token, Region, and Value. Except for ActiveMeasurementList all these classes implement
simple list functionality and will be based on list classes from the Standard Template Library [STL].
The ActiveMeasurementList class additionally provides a functionality to simultaneously start, stop,
and read all measurements that it contains.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 19 / 56

FileObject

FileObject(fileName : String)
getType()
getOcmID() : String

TokenizedObject

Token izedObject(ocmToke n : Token)
getType ()
getOcmID() : String

Token

ge tOcmID() : String
ge tType()

1

0..1

1

0..1

TokenList

add()
remove()

<<STL::List>>

0..* 0..*0..* 0..*

Value

numXElements() : Integer
numYElements() : Integer
getValue(indexX : Integer = 0, indexY : Integer = 0) : Double
getStartTime(indexX : Integer = 0, indexY : Integer = 0) : Double
getEndTime(indexX : Integer = 0, indexY : Integer = 0) : Double
getVirtTime(indexX : Integer = 0, indexY : Integer = 0) : Long

MetricsList

add()
remove()
get()

Metrics
$ metricsList : MetricsList

10..* 10..*

1
0..*

1
0..*

AppObject

getName() : String
getOcmID() : String
getType()
<<static>> getSites() : AppObjectList
<<static>> getNodes(sites : AppObjectList) : AppObjectList
<<static>> getProcesses(nodes : AppObjectList) : AppObjectList

AppObjectList

add(appObject : AppObject) : void
remove(appObject : AppObject) : void
get(n : Integer) : AppObject

0..*

0..*

0..*

0..*

Region

getName() : String
<<static>> getModules(processes : AppObjectList) : RegionList
<<static>> getFunctions(modules : RegionList) : RegionList
getStartAddress() : Integer
getEndAddress() : Integer

RegionList

add()
remove()
get()

0..*

0. .*

0..*

0. .*

MeasurementList

add()
rem ove()
s tart()
s top()
read()

ActiveMeasurement

0..*

0..*

0..*

0..*

MeasurementSpec

MeasurementSpecList

add()
remove()
get()

0..*

0..*

0..*

0..*

Figure 2.3 Class diagrams of auxiliary classes

The PMC and HLAC provide an identical interface that allows to define performance measurements
and to read their results. This interface consists of two C++ abstract base classes (Metrics and
ActiveMeasurement) and a number of non-abstract classes. The PCM and HLAC provide different
implementations for the abstract base classes, depending on the way how measurements are realized.
The other, non-abstract classes are independent of the realization of measurements.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 20 / 56

2.2.2. Performance Measurement component (PMC) class diagrams
Performance Measurement Component consists of a set of classes that are used to carry out a pre-
defined set of fixed measurements. Therefore, it consists of a level of abstract classes representing
various common aspects of measurements and a level of inherited classes, defining broad categories of
above-mentioned pre-defined measurements.

In general, each measurement can be described as 3 complementing parts. The first one is the
specification of what values to measure, with corresponding information on how to measure them, e.g.
information on what “communication volume” is to be measured, and that for that measurement the
monitoring service “counter” type object is to be used. This information is specified in the Metrics
class.

Then a set of objects, on which the measurement is carried out, is specified in the MeasurementSpec
class. This can be information e.g. on host name, process identifier etc., thus specifying the
measurement as “communication volume on host foo.bar within process 883”.

Finally, for each measurement a set of low-level monitoring service identifiers, such as an identifier of
the above-mentioned counter, has to be stored throughout the time of measurement. This data is
contained in the ActiveMeasurement class. This class is also an interface to a running measurement for
other parts of G-PM, such as a “Visualisation Window”.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 21 / 56

2.2.2.1. Specific measurements classes
It should be noted that classes ActiveMeasurement and Metrics, being abstract classes for,
respectively, a specific measurement and measurement type, are both overloaded in the PMC module.
Each inherited class is responsible for handling a broad range of measurement types. In the PMC
module, there are two such generic types: sampled measurement and function-based measurements.

2.2.2.1.1. Sampled measurement classes

Sampled measurements consist of those attributes of the application and its environment that change in
a continuous manner independently from the application-generated events, thus allowing only for
obtaining values sampled at some interval. An example of such metric could be a host’s CPU load.

SampledMetrics
OCMServiceRequest : String
ResultFormat : String
ResultType : DataType

<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB) : ActiveMeasurement
<<virtual>> read(block : Boolean, flush : Boolean, data : void *)

SampledActiveM
easurement

ActiveMeasurement Metrics

Figure 2-2 Class diagrams of sample-related metrics and sample-related active measurements

Sampled measurements are handled by SampledMetrics class, which itself knows how to measure the
metrics. There will exist several instances of that class, one per each sampled metrics type offered by
the monitoring services. These instances differ only in private attribute members specifying a
command string for monitoring services and properties of a metric, e.g. for a CPU load metric there
will exist an instance of the class with an OCM-G command string containing service request
appropriate for measuring the CPU load.

It should be noted that such a measurement does not require initialisation of any type and does not
need to store any monitoring service objects identifiers. Therefore, since each sampled measurement
can be carried out solely by SampledMetrics class, the accompanying SampledActiveMeasurement
class does not overload any members of ActiveMeasurement class. Both of those classes are depicted
in Figure 2-2.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 22 / 56

2.2.2.1.2. Function-based measurement classes

Function-based measurements are another broad class of metrics. Each function-based measurement is
built on conditional events associated with a function call or a set of function calls: starting a call to
the function and finishing the call to the function. The value of the metric is, in principal, based on the
parameters passed or returned by the measured function.

SingularFunctionMetrics
ServiceDefinitionList : StringList
ValueParameterList : StringList

<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB, valueToken : Token) : ActiveMeasurement
<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB) : ActiveMeasurement
<<virtual>> initialize() : Token
<<virtual>> destroy(ServiceSCR : Token)

FunctionMetrics
InitalizationString : String
DestructionString : String

<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB, valueToken : Token) : ActiveMeasurement
<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB) : ActiveMeasurement
<<virtual>> destroy(valueToken : Token)
<<virtual>> initialize() : Token
read(block : Boolean, flush : Boolean, data : void *, valueToken : Token)

AggregatedFunctionMetrics

<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB, valueToken : Token) : ActiveMeasurement
<<virtual>> measure(spec : MeasurementSpec, callback : MeasurementCB) : ActiveMeasurement

Metrics

Figure 2-3 Class diagram of function-related measurements

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 23 / 56

SingularFunctionActiveMeasurement
ServiceCSRList : TokenList

SingularFunctionActiveMeasurement(valueToken : Token, isShared : Boolean, serviceCSRList : TokenList)
~SingularFunctionActiveMeasurement()
<<vi rtual>> getCSRList() : TokenList

FunctionActiveMeasurement
ValueToken : Token
IsValueTokenShared : Boolean

FunctionActiveMeasurement(valueToken : Token, isShared : Boolean)
~FunctionActiveMeasurement()
<<virtual>> read(block : Boolean, flush : Boolean, data : void *)

AggregatedFunctionActiveMeasurement
SubMeasurements : MeasurementList

AggregatedFunctionActiveMeasurement(valueToken : Token, isShared : Boolean, subMeasurements : MeasurementList)
~AggregatedFunctionActiveMeasurement()

ActiveMeasurement

Figure 2-4 Class diagram of function-related active measurements

The first of a set of classes associated with function-based metrics is the SingularFunctionMetrics
class, which is inherited form FunctionMetrics class described below. It specifies how to measure a
property, i.e. a singular function and function parameters the metric is based on. It also contains
information on how to create and destroy some objects in the monitoring service, which are necessary
for carrying out the measurement. On the other hand, the accompanying
SingularFunctionActiveMeasurement is a placeholder for the identifiers of these objects, thus allowing
to have several measurements based on one SingularFunctionMetrics class object. These objects are
passed to SingularFunctionMetrics class object when a communication with monitoring services is to
occur.

It should be noted that there is often a need to treat several functions as one class of functions. The set
of MPI send functions consisting of e.g. blocking and non-blocking send functions is one example. To
handle such a case in an easy manner, the classes AggregatedFunctionMetrics and
AggregatedFunctionActiveMesurement have been specified. In the above-mentioned example, the
“MPI_Isend” and “MPI_Issend” would be singular function metrics, while “non-blocking send”
metric would be an aggregated function metric, which itself would be aggregated within “send”
metric.

The AggregatedFunctionMetrics class allows to treat several FunctionMetrics as a single metrics. It
specifies how to initialise and measure the metrics with the help of the underlying FunctionMetrics

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 24 / 56

class objects. The AggregatedFunctionActiveMeasurement class is, in principal, responsible for
managing the underlying FunctionActiveMeasurement class objects.

The classes AggregatedFunctionMetrics and SingularFunctionMetrics are both inherited from a
Metrics class via a FunctionMetrics class. This class combines common interfaces of function-based
metrics, thus allowing to aggregate not only singular, but also aggregated function metrics. Therefore
it is possible to create multi-level hierarchy of function-based metrics. Within the same approach, the
classes AggregatedFunctionActiveMeasurement and SingularFunctionActiveMeasurement are
inherited from FunctionActiveMeasurement class, which itself is inherited from ActiveMeasurement
class. The classes described above are depicted in Figure 2-4.

2.2.3. The HLAC component

The HLAC component consists of classes which support to specify the user defined and application
specific metrics. Using the metrics specification Editor in UIVC the developer can write the
specification of metrics using PMSL (Performance Metrics Specification Language), which is part of
this component. This specification will be parsed and as a result, all the necessary information of the
defined metrics will be stored in the UDSpecifcation class in the form of a DAG (Directed Acyclic
Graph). When the measurement is defined, the DAG will be evaluated and at the same time, a DFG
(Data Flow Graph) will be created to collect the result values which will be received asynchronously.
The DFG will be then analysed and the sub-dataflow graphs which can be evaluated locally on their
appropriate host will be distributed using the OCM-G system. Since we need new OMIS services
which deal with the dataflow graphs, a HLAC-specific OCM-G extension is provided.

2.2.3.1. Specific HLAC classes
First of all the class diagrams for all classes in HLAC will be presented in this section. To have a user
friendly presentation of the class diagrams, we omit methods and attributes in these diagrams. For
more details, please see the documentation of HLAC which is generated by DOXYGEN. This
documentation is available in the apidoc directory of the G-PM sources. If necessary, generate it by
invoking ‘make apidoc’ in the top-level directory of the G-PM sources.

Next to the class diagrams, some sequence diagrams as examples will be presented to show the
interaction of the objects of this component. After this, a detailed description of how those metrics are
processed and how the distributed evaluation of the performance measurement are realised will be
shown.

2.2.3.1.1. Specific classes for user defined metrics

UDSpecification (User Defined Specification)
This class contains all the necessary information about a user defined metrics. It is constructed with
the help of a parser for the Performance Metrics Specification Language PMSL. The parser has been
constructed using the tools Flex for scanning and Bison for parsing.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 25 / 56

In general, when a new metrics is defined, the class will parse the PMSL specification, create a
Directed Acyclic Graph (DAG) as an internal representation of this specification, and optimize it.
The class also is responsible for the symbol table management during the PMSL parsing. It offers
methods to create entries for local variables which are declared in the body of the metrics
specification, as well as parameters of the specified metrics. Each symbol table entry is a pointer to an
identifier node in the DAG (see class IdentifierNode below).
Once a measurement of the metrics is requested, the evaluateDAG method of this class does a partial
evaluation of the DAG, optimizes it, creates a dataflow graph controlling the measurement’s
evaluation, defines all the child measurements and OMIS conditional requests necessary for the
measurement, and creates the ActiveMeasurement object. When metrics are specified to receive scalar
parameters, but the user defined a measurement using lists of objects, several DAGs will be created,
one for every combination of the parameters in the lists. These DAGs are then combined into a single
DAG using an "ADD" operator (i.e., the result of the measurement is an aggregated value, comprising
all possible combinations of the parameters).
The constructor of this class is called from the PMSL parser and receives the name of the user defined
specification, which will be used as the name of the corresponding metrics in the navigation part of the
user interface of G-PM.

UDMetrics (User Defined Metrics)
After creating an object of this class, which is a subclass of Metrics, the proper PMSL specification
must be attached to it via the setSpecification method. This method invokes the PMSL parser to create
an UDSpecification object, which is then stored in the UDMetrics object. The method also receives a
callback object, which will be called whenever an error is occurring in the process of parsing. Only
when parsing was successful, the UDMetrics object is appended to the list of available metrics.

Figure 2-5: Class diagram for the top-level HLAC classes

During the definition of a measurement based on this user defined metrics, the actual measurement
specification object (MeasurementSpec) and measurement callback object (MeasurementCB) will be
given as parameter for the measure method of this class. This method then prepares the measurement
with the help of the UDSpecification class and its method evaluateDAG (see above).

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 26 / 56

UDActiveMeasurement (User Defined Active Measurement)

The objects of this class represent an active measurement of a user defined metrics. This is a subclass
of the abstract class ActiveMeasurement as mentioned in Section 2.2.1.1.3. This active measurement is
returned as a result of the measure() method of UDMetrics.

This class contains all the information, which is needed for enabling/disabling, reading, and deleting
the measurement:

- all active measurement objects created for the inferior measurements, i.e. measurements of
metrics used in the specification of the user defined metrics,

- a list of OMIS conditional request tokens for all conditional requests sent to OCM-G for
monitoring probe events, which are used for enabling, disabling, and deleting these requests,

- all active measurements which must be read in order to get a result for this measurement,
- a list of aggregation data flow nodes (see Section 2.2.3.1.3) which must be read after the

active measurements above

Besides the top-level classes documented above, the HLAC consists of two packages, which
implement directed acyclic graphs (as an intermediate representation for metrics specifications) and
data flow graphs (for the evaluation of measurements). These packages are described below.

2.2.3.1.2. Specific classes for the directed acyclic graph (DAG)

The DAG representing a metrics specification, which is created from the PMSL parser, consists of
different types of nodes, whose common behaviour is implemented in the base class Node. The
methods provided by this class allow to build the DAG and to perform some manipulations on the
DAG, like replacing nodes with others, common sub expression elimination (CSE), or simply printing
the DAG. Since for most of these manipulations, a recursive traversal of the DAG is necessary, the
Node class is a quite complex one, with a lot of methods of rather high complexity as was remarked by
the CrossGrid Quality Assurance, however, it is a necessity caused by the complex DAG algorithms,
which cannot easily be changed.
In addition, the class implements methods to partially evaluate the DAG, which results in the creation
of a dataflow graph. This graph is used both to define the actual measurements and the necessary
OMIS requests for monitoring the probes, as well as for the evaluation of the measurements' results.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 27 / 56

Figure 2-6: Inheritance diagram for the DAG classes

The subclasses of this class are briefly described below. They represent the different kinds of DAG
nodes.

ConstantNode:

This class represents constants values in the DAG.

A constant mainly consists of its value and a type. At the moment, during construction of the
DAG, only constants of types double, int, bool, and TimeInterval are needed.

IdentifierNode:

This class represents identifiers in the DAG.

An identifier has a name, a type, and an optional value. During the construction of the DAG,
this value is again a DAG. Only during the evaluation, real values are assigned to identifiers
(namely parameters and global variables).

ProbeNode:

This class implements DAG nodes representing the use of probes.

Similar to a MetricsNode, a ProbeNode just stores information on the probe and its
parameters. However, instead of the name, a pointer to the IdentifierNode of the probe is
stored.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 28 / 56

OperationNode:

This class implements DAG nodes representing arithmetic and logical operations. At the
moment, we have the following unary and binary operations:

• Plus, minus, times, div, mod, and unary minus for operands of type double, int, and Value,

• Equality and inequality for all scalar data types,

• the other comparison operators only for operands of type double, int, and Value,

• AND, OR, and NOT for Boolean operands,

• the IN operator, which checks whether an element is in a list,

• the special AT operator, which determines the value of an expression when an event
occurs.

In addition, there are n-ary operations, which are only defined for types double, int, and Value:
ADD, MULT, MIN, MAX, MEAN, and STDEV.

SetFunctionNode:

This class implements DAG nodes representing aggregation functions, like 'sum over all
elements of a specified set'.

Currently, seven aggregation functions are defined:

• SUM: the sum of the elements. Elements must be of type double, int, or Value

• PROD: the product of the elements. Elements must be of type double, int, or Value

• MIN: the minimum of the elements. Elements must be of type double, int, or Value

• MAX: the maximum of the elements. Elements must be of type double, int, or Value

• MEAN: the mean value of the elements. Elements must be of type double, int, or Value

• STDEV: the standard deviation of the elements. Elements must be of type double, int, or
Value

• COUNT: the number of elements. Elements can be of any scalar type.

• UNIQUE: returns an arbitrary element. Elements can be of any scalar type. The idea is
that typically, the set is defined in such a way that it contains only one element.

A SetFunctionNode has one or two children. The first one is the expression producing the
elements of the set when the iterators iterate over their value range. The second one is a
Boolean expression over the iterators. An element is taken into account for the computation
only if this expression evaluates to true. If the expression is missing, all elements are used
for the computation, i.e. there is no further restriction on the iterators.

AtrributeNode:

This class represents DAG nodes which compute attributes of objects.

At the moment, attributes:

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 29 / 56

• .time can be applied to a Value and returns its time stamp.

• .duration can be applied to a Value and returns the length of its measurement interval.

• .upper can be applied to a TimeInterval and returns its upper bound.

• .site can be applied to a Node or Process and returns its site.

• .node can be applied to a Process and returns its node.

• .rank can be applied to a Process and returns its rank, i.e. its global ID.

Nodes of this class always have exactly one child node.

VTaggregationNode:

This class implements DAG nodes representing the aggregation over time.

This operation is defined only for types double, int, and Value. The possible aggregation
operators are: SUM, PROD, MIN, MAX, MEAN, and STDEV.

MetricsNode :

This class implements DAG nodes which represent uses of (``calls to’’) already defined
metrics.

The information stored is just the name of this metrics and the parameter expressions, which
are the child nodes of the MetricsNode.

2.2.3.1.3. Specific classes for the dataflow graph (DFG)

A dataflow graph consists of DataflowNode objects, which are linked together via
DataflowDataProvider objects, which act as a data channel. The DataflowNode class represents the
operations in the dataflow graph, while the DataflowDataProvider class delivers the operators. Both
classes together implement a dataflow driven evaluation: DataflowNode objects wait until all their
child data providers have their results ready and then collect and remove all the corresponding values
from them. The dataflow node then calculates its result, based on the node type and the collected
values, and pushes this result to the data provider of its parent node(s). The DataflowDataProvider
class implements a callback mechanism that is used to notify the proper dataflow nodes when an
operand is available.

The DataflowNode class possesses several subclasses for the different kinds of operations. Each of
these classes corresponds to a subclass of the DAG Node class.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 30 / 56

Figure 2-7: Inheritance diagram for DFG classes

AttributeDataflowNode:
This class implements the dataflow node for the corresponding AttributeNode in the DAG.
Since all attributes except the .duration attribute are evaluated when the measurement is
defined, the .duration attribute is the only one implemented by this class.

OperationDataflowNode:
This class represents the dataflow node for its counterpart OperationNode from the DAG. This
class collects values from the child data providers, executes the defined operation on the list of
the results and writes the result value to the parent data provider(s).

MeasurementResultDataflowNode :
This contains the counterpart of the MetricsNode from the DAG. The node receives
measurement results from the callback of its corresponding active measurement and forwards
these results to its parent data provider(s).

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 31 / 56

IteratorDataflowNode:
This class implements a dataflow node, whose value can be explicitly set via a method call.
The value is then forwarded to its parent data provider(s). This class is used when data from a
probe needs to be injected into the dataflow graph.

VTaggregationDataflowNode:
This class implements a dataflow node for its corresponding VTaggregationNode in the DAG,
which deals with the aggregation of measurement values over time. This node aggregates its
operand values in an internal variable and forwards its value to the parent data provider(s)
only when explicitly requested.

The DataflowDataProvider class has two subclasses:

DataflowFIFO:
This class implements a first-in-first-out queue (FIFO) with the help of the Standard Template
Library STL. It is used to ``connect’’ the DataflowNodes in a dataflow graph, implementing
the necessary buffering.

DataflowConstant:
This class implements a special data provider for constant values. Conceptually, it can be
viewed as a FIFO which contains an unlimited number of identical, predefined values. The
class allows introducing constants in the dataflow driven evaluation scheme, without a need to
handle this case especially in all the dataflow nodes.

2.2.3.1.4. OCM-G extension for distributed evaluation

G-PM tries to evaluate the DFGs corresponding to a measurement of a user-defined metrics in a
distributed way. In order to achieve this, an extension to the OCM-G is needed. This extension
provides services to deal with data flow graphs on the hosts different from the one where G-PM is
executing. These services deal with the following tasks:

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 32 / 56

- Allocating a remote DFG and returning a DFG token (i.e. a location-transparent object
reference)

- Adding nodes and data providers to a remote DFG
- Handling the events of data providers in a remote DFG, which should inform the appropriate

dataflow node in G-PM
- Reading and writing results from/to nodes in a remote DFG
- Deleting a remote DFG when it is no longer needed.

The OCM-G extension consists of the following source files which implement the new OMIS
services.

DFGtoken.C:
This file implements the token (i.e. a location-transparent object reference) for DFGs in OCM-G. It
implements the functions required by OCM-G to create, localize and delete the DFG token. The token
is constructed by simply combining a sequence number and the local node token. Thus this token is
globally unique and easy to localize.

GenerateDFG.C:
This file implements the following OMIS services (see the OMIS document for a description of the
notation):

hlac_create_dfg – create an empty dataflow graph.
token

hlac_create_dfg(token* nodelist)
On the specified nodes, a new OCM object which stores the pointer to the dataflow graph will
be created and a token for this OCM object (i.e., a DFG token) will be returned as a result.

hlac_add_dfg – add a sub-dataflow graph to an existing (empty or non-empty) graph.
void

hlac_add_dfg(token dfg, string spec)

The DFG token is used to get the pointer to the ‘parent’ dataflow graph, the sub-dataflow graph
is added to it, and the root nodes of the added sub-dataflow graph is stored in a list. The sub-
dataflow graph is specified as an encoded string, since OMIS does not support arbitrary
structures or objects as service parameters.

hlac_delete_dfg – delete a data flow graph.
void

hlac_delete_dfg(token* dfglist)

The OCM object (and in turn the DFG) will be deleted, when no more token are referring to this
object.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 33 / 56

DFGactions.C:
This file implements the following OMIS actions:

hlac_dfg_fifo_read – read a FIFO in a DFG.
struct dataflowValue {

 floating value; // see class DataflowValue!

 floating startTime;

 floating stopTime;

 integer virtualTime;

 integer requesterID;

 integer hasVirtualTime;

 integer hasTime;

};

struct {

 integer numValues; // number of DataflowValues following

 dataflowValue *vlaues;

} hlac_dfg_fifo_read(token dfg, integer fifo)

hlac_dfg_iterator_write – call the write method on the specified IteratorDataflowNode.

void

hlac_dfg_iterator_write(token dfg, integer node, floating value,

 floating time, integer virtualTime,

 integer requesterID)

hlac_dfg_aggregation_read – call the read method on the specified VTaggregationDataflowNode.

void

hlac_dfg_aggregation_read(token dfg, integer node,

 integer requesterID,

 integer virtualTime)

hlac_dfg_aggregation_start – call the start method on the specified VTaggregationDataflowNode.

void

hlac_dfg_aggregation_read(token dfg, integer node)

hlac_dfg_measurement_read_and_forward – read the results of a measurement and forward them

to the specified MeasurementResultDataflowNode.
void

hlac_dfg_measurement_read_and_forward(token dfg, integer node,

 string service,

 any *parameters,

 integer requesterID,

 integer virtualTime)

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 34 / 56

FIFOevent.C:
This file contains an implementation for an event which is raised when a dataflow data provider
contains values to be read (see the OMIS document for an explanation of the notation).

hlac_dfg_fifo_has_value – a FIFO received a value.
void

hlac_dfg_fifo_has_value(token dfg, integer fifo)

--> void // no service specific event context parameters

This event is raised whenever the specified FIFO in the given DFG receives a value which
causes the FIFO to make a state transition from empty to non-empty. The event does not
provide any specific event context parameters. Rather, the value(s) contained in the FIFO
should be read via the hlac_dfg_fifo_read service.

2.2.3.2. Sequence diagrams

The following sequence diagram shows the sequence of actions for measuring a user-defined metrics,
whose definition matches the following template:

SampleMetrics(…, VirtualTime vt)

{

 …

 return SomePMCmetrics(…,[START,NOW]) AT probe(…,vt);

}
Note that the names of the stereotypes are abbreviated in order to show a meaningful interaction. The
abbreviations are explained below.
MS MeasurementSpecification UDM UDMetrics
UDS UDSpecification N Node
DFDP DataflowDataProvider M Metrics
AM ActiveMeasurement DF N DataflowNode
UAM UDActiveMeasurement OCBI OMISCallbackInfo
OCBIE OMISCallbackInfoElement

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 35 / 56

Figure 2-8: Sequence diagram for measuring a user defined metrics

The interaction which takes place when a probe event is detected by OCM-G is shown in the
following sequence diagram. For each detected probe event, one measurement value is pushed into the
FIFO. Once the measurement is read, the FIFO will be emptied and its content is passed to the read
callback. The diagram clearly shows the asynchronous character of the OCM-G interface. Note that
this diagram presents the case where the measurement is not evaluated in a distributed way (e.g.,
because child measurement childAM can only be evaluated in G-PM itself).

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 36 / 56

Figure 2-9: Sequence diagram during measuring a user defined measurement

The sequence diagram in Figure 2-10 shows the interactions which happen when a measurement of a
user-defined metrics matching the following template is being read:

SampleMetrics(…, TimeInterval ti)

{

 return SomePMCmetrics(…,ti);

}

Note that this example is only intended to show the interactions in a clear way; it is not a particularly
good example for a user-defined metrics.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 37 / 56

Figure 2-10: Sequence diagram during measuring a user defined measurement

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 38 / 56

2.2.3.3. Translation of PMSL and implementation of measurements

For the sake of illustrating the process of translating PMSL to DAGs and DAGs to DFNs, we will use
two example metrics definitions as shown in Figure 2-11 below. The purpose of these metrics is to
measure the amount of I/O caused by a specify type of user interaction in an interactive applications.
We assume that the programmer inserted two probes into the application (called begin and end),
marking the beginning and end of the processing of a user interactions. Probe calls belonging to the
same interaction are identified by receiving the same value for the virtual time.

 VirtualTime vt)
{
 PROBE end(Process p, VirtualTime vt);
 PROBE begin(Process p, VirtualTime vt);
 Process p;
 Value[] volume;
 volume[p] = IO_volume(p, partners, [START, NOW]) AT end(p
 - IO_volume(p, partners, [START, NOW]) AT begin
 return SUM(volume[p] WHERE p IN processes);
}

IO_volume_for_interaction_vt(Process[] processes, File[] par

IO_volume_for_interaction(Process[] processes, File[] partne
 TimeInterval time)
{
 VirtualTime vt;
 Value[] volume;

 return SUM(volume[vt] WHERE volume[vt].time IN time);
}

 volume[vt] = IO_volume_for_interaction_vt(processes, part

1

2
3
4
5
6
7

8
9

10

11
12
13
14
15
16

Figure 2-11: Two example metrics specified with PMSL.

In the example above two metrics are defined: IO_volume_for_interaction_vt specifies a
metrics for the amount of disk I/O for a point in virtual time, i.e. (in our example) for a single user
interaction. IO_volume_for_interaction is a metrics that refers to a given interval of (real)
time. Its result is the I/O volume caused by all user interactions in the specified measurement time
interval. See the G-PM user’s manual for a more detailed description of PMSL and its features.

The translation of PMSL specifications is designed in such a way that a distributed implementation of
the corresponding measurements can be realized. There are two reasons why the measurements must
be implemented in a distributed fashion: First, the AT construct in PMSL requires a measurement
value to be determined when an event occurs. In order to avoid communication delays which would
adulterate the results, determining the measurement value must happen at the same place where the
event occurs. Second, distributed processing of measurement data often significantly reduces the
amount of data that must be sent to the G-PM tool via the network, thus reducing the perturbation of
the measured system and increasing scalability. In the following, we document the process of
converting PMSL specifications to on-line measurements, using the metrics from Figure 2-11 as an
example. In Section 2.2.3.4, we present more details on the distributed evaluation.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 39 / 56

The way from a PMSL specification to a distributed on-line measurement consists of five phases:
1. When the user defines the new metrics, it is parsed into an intermediate representation (IR).
2. Later, when the user defines a measurement of this metrics, the IR is partially evaluated, using

the now known parameter values (i.e. objects to measure, measurement restrictions).
3. The partially evaluated IR is optimised in order to reduce the measurement's perturbation.
4. The necessary inferior measurements and the monitoring requests for all probe events are

defined. At the same time, a dataflow graph is created, which controls the computation of the
final measurement results.

5. The dataflow graph is distributed to the components of the OCM-G monitoring system and the
measurement is started.

2.2.3.3.1. Parsing PMSL into an IR
As an intermediate representation for PMSL specifications we use simple expression-DAGs (directed
acyclic graphs), where inner nodes are operations, while leaf nodes are variables or constants. Error!
Reference source not found. shows the IRs for the example metrics of Figure 2-11. Note that using
an expression-DAG as IR is only possible since PMSL is a functional language. Most of the
translation process is relatively straightforward, with three notable issues:

• Assignments are handled by subsequently replacing all uses of the assigned variable with the
DAG of the assignment's right hand side. For indexed variables, this replacement includes an
index substitution. Thus, local variables like the volume arrays in Figure 2-11 are completely
eliminated.

• Variables used as iterators in aggregation functions (e.g. p in line 8 of Figure 2-11) are
substituted by anonymous, private copies. This is necessary to avoid conflicts when the same
variable is used in different aggregations.

• After creating the IR, we perform a common subexpression elimination. This avoids multiple
definitions of the same inferior measurements later. In our example, the two references to the
IO_volume metrics are unified in Figure 2-12a.

IO_volume

AT AT processes

vt

pa
rtn

er
s

tim
e

pa
rtn

er
s

pr
oc

es
se

s

interaction_vt
IO_volume_for

VT_SUM
- IN

SUM Reference from aggregation
node to its iterator variable

end begin

b) IO_volume_for_interactiona) IO_volume_for_interaction_vt

Figure 2-12: Intermediate representation of the example metrics.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 40 / 56

The main problem at this stage, however, is the handling of the time parameters. While they are
explicit input parameters in the specification, this is not the case in the implementation. An on-line
performance analysis tool just requests a measurement value from time to time. Thus, the actual time
of a measurement is the time when the underlying monitoring system processes this request.
Fortunately, the use of time is rather limited in PMSL:
A virtual time parameter can not be modified, but just passed to inferior metrics and probes. Thus, in
the implementation we can convert it from an input to an output parameter. However, we must then
ensure that all “uses” of the parameter provide the same value (e.g. in line 7 of Figure 2-11 both
probes must provide the same value for vt). This is done by taking the virtual time into account in the
firing rules of the dataflow nodes created in phase 4.
Real time (and time interval) parameters can not be modified, too. Like virtual time, they can be
passed to inferior metrics. This case is simply handled by requesting the values for these metrics at
(approximately) the same time.

But a time interval can also be used as an operand to an IN operator inside an aggregation function,
like in line 15 of Figure 2-11. This case is detected via pattern matching in the IR, which checks for
constructs of the form

aggregation (expr WHERE expr.time IN time)
We then introduce special aggregation nodes (e.g. “VT_SUM” in Figure 2-12b) which later handle
this case.

Partial Evaluation of the IR
Once the user defines a measurement based on the specified metrics, all the parameters of this metrics
are fixed (with the exception of the time parameters, which are handled as described before). Thus, we
can assign values to some of the leaf nodes in the DAG and evaluate its inner nodes. For each node,
the evaluation either results in a constant or - if some of the node's operands still have unknown values
- in a new DAG. The result of this phase is shown in Figure 2-13a, where we assumed that a
measurement of IO_volume_for_interaction should be performed for two processes (p1 and
p2), restricted to consider only I/O to a file named file1 .

+

VT_SUM +

ATAT

-

VT_SUM

ATAT

-

VT_SUM

ATAT

-

ATAT

-

end
p1

begin
p1

end
p2

begin
p2

end
p1

begin
p1

end
p2

begin
p2

Process p2Process p1

IO_volume
p2, "file1"

Process p1 Process p2

a) before Optimization b) after Optimization, with Partitioning

IO_volume
p2, "file1"

IO_volume
p1, "file1"

IO_volume
p1, "file1"

Figure 2-13: Partially evaluated intermediate representation.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 41 / 56

The figure shows that besides the actual evaluation, a couple of other transformations is applied in this
phase:

• Uses of metrics, which have been specified via PMSL, are ”inlined”, i.e. the node has been
replaced with the partially evaluated DAG of this metrics. In our example, the node
IO_volume_for_interaction_vt of Figure 2-12b has been replaced in this way.

• Since the parameters of all used metrics must evaluate to constants in this phase, there is no
need anymore to represent them as explicit child nodes. Instead, the metrics nodes for built-in
metrics directly contain the full measurement specification.

• Similarly, probe nodes now directly contain the information needed to request the monitoring
of this probe.

• Aggregation nodes are replaced by simple operations when the iteration set is known. E.g. the
“SUM” node of Figure 2-12a is replaced by a “+” node with two operands, one for each
process considered.

Optimisation of the Partially Evaluated IR (PEIR)
This phase is not yet implemented in the current prototype. It will be realized in the final prototype.

The idea of this phase is that the PEIR can be optimised in several ways to improve the quality of the
resulting measurement. The main optimisation goal is to reduce the frequency and volume of data
which needs to be sent over the network. This can be achieved by moving nodes aggregating over
virtual time down towards the leaves. E.g. in Figure 2-13a, the labelled sub-DAGs can be evaluated
locally in the context of the monitored processes. However, the “+” node combines data from different
processes. This means that whenever an end event occurs, some communication is necessary. By
interchanging the “+” and ”VT_SUM” nodes, as shown in Figure 2-13b, the aggregation over time can
now also be done locally. Communication is only required when the aggregated values are needed
because the result of the measurement has been requested.

Definition of Measurements and Monitoring of Probes
In this phase, a measurement is defined for each metrics node in the PEIR. Likewise, the monitoring of
all probes used in the PEIR is requested. The latter results in a callback function being invoked when a
probe is executed. This function usually will read some of the inferior measurements. Their results are
again delivered via a callback. Since we will get these results at different times, because they are
triggered by different probes, the best way to combine them into the final result is by using a dataflow
approach. Thus, we also create a proper dataflow graph in this phase.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 42 / 56

Callback Actions performed

+

--

VT_SUM VT_SUM

M1 M2

data flow is triggered by requesting the measurement's result
data flow is triggered by execution of probes

measurementi

measurementi

p : endi

IO_volume for process pi

Dataflow graph:

3 41 2
get (value, time) from measurement result
get (virtualTime, requesterID) from callback data
pass (value,time,virtualTime,requesterID) to node Mi

: measurement of

get vt from event notification
request a result of measurement i

p : begini get vt from event notification
request a result of measurement i

with callback data = (vt, 2+2*(i-1))

with callback data = (vt, 1+2*(i-1))

(i = 1,2)

(i = 1,2)

(i = 1,2)

Figure 2-14: Implementation of the measurement.

The result for our example is shown in Figure 2-14. It shows both the dataflow graph and the activities
performed by the different callbacks. The tokens flowing through the dataflow graph consist of a
measurement value, its time stamp, and optionally a virtual time stamp and a requester identification.
The latter is needed when the same measurement is read by different probe callbacks. In these cases,
the requester identification is used to determine the dataflow arc to which the result is sent. E.g. node
“M1” will forward its result token to the arc labelled, when the result was requested by the begin
callback, and to arc labelled when requested by the end callback.

While in the current prototype, the whole measurement is evaluated centrally inside the HLAC, the
advantage of this dataflow scheme is that the same scheme can be used in the next prototype to
support distributed processing. An arc between dataflow nodes processed on different hosts just
translates to a communication link.

Measurement
During the measurement, tokens are created in the dataflow graph either when a probe is executed or
when the measurement result is requested. Usually, a dataflow node fires, i.e. performs its operation
and produces a result token, when a token is available on each of its input arcs. In our implementation,
there are two extensions to this general rule:

• If an input token contains a virtual time stamp, the operation waits until it has a complete set
of operands with identical virtual time stamps (e.g. the “-” nodes in Figure 2-14).

• When a dataflow node aggregating over virtual time (e.g. the “VT_SUM” node) triggers, it
does not produce a result token but rather updates an internal summary value. The node
produces a result token only upon a special request. In our example, this request is issued
when the result of the complete measurement is requested.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 43 / 56

2.2.3.4. Distributed evaluation

As it shown in the sequence diagram in Figure 2-9, whenever a probe event is detected, G-PM will be
informed and tries to get the result of the corresponding measurement. This will increase the
frequency and volume of data which needs to be sent from the local monitors to the G-PM tool over
the network during the measurement of such user defined metrics. To get rid of this deceleration, we
need a solution which is based on distributed evaluation.
In addition, some constructs like the "AT" construct in PMSL require a measurement value to be
determined when the occurrence of a specified event is detected. In order to avoid communication
delays which would adulterate those results, a measurement value must be determined - if it is possible
- on the compute nodes where the event occurs.

The Data Flow (DF) model as described above is used not only to distribute the measurement
evaluation but also to reassemble the measurement results. Since these results are derived at different
times (as they are triggered by different probes), the dataflow graph supports combining them into the
final result. Since this model does not impose any complete ordering on the elementary function of a
task, we can determine parts of independent tasks easily. In turn this will simplify the determination
process for the evaluation location of sub-tasks. This model is also favoured when collecting the
results, since the asynchronous nature of this model provide us support for data aggregation.

Figure 2-15: distributing a DFG into parts which can be evaluated locally.

2.2.3.4.1. Using dataflow graphs to distribute the evaluation

The DFG used in this context has two major types of nodes: dataflow nodes which aggregate or create
packets of result values, and dataflow nodes which are used as First In - First Out (FIFO) as shown in

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 44 / 56

Figure 2-15.The packets contain measurement result values, which flow through the DFG as tokens
consisting of measurement values, a time stamp, and optionally a virtual time stamp and a requester
identification. The latter is needed when the same measurement is read by different probe callbacks. In
those cases, the requester identification is used to route the packets properly. The arcs between these
two types of dataflow nodes are used simply as communication link.
The dataflow nodes are created directly from the respective nodes of the DAG, except for the sub-
DFGs having dataflow nodes with AT construct as roots. In such cases, the whole sub-DFG will be
replaced with a single dataflow node. This dataflow node is used to collect the result values, whenever
the occurrence of the underlying event is detected. For every dataflow node created in this way, a data
provider node will be added at the top of it, to reassemble the result packets which are to be
synchronized.
Whenever the state of a specific data provider turns from empty to non-empty, the parent dataflow
node of this data provider will be notified to read the result packets from all the children nodes. This
process continues until one of the children is empty. While reading the result packets, results
synchronization will be performed depending on the value of the virtual time. This means that the
whole result should have either the same virtual time or no virtual time at all. Otherwise, a new packet
representing an error will be created and forwarded to the parent data provider.
After a successful synchronization, in general, a final result and the new time stamp will be computed
using the functionality of the node and the new packet will be routed according to its requester
identification of the result value. This procedure is applied only for internal dataflow nodes. Dataflow
nodes, which are end-points and thus have no children data providers, forward the result packets
computed at this node to the parent data provider according to the requester identification of the result
values.

2.2.3.4.2. Using OMIS and OCM-G for distributed evaluation

One of the notable features of OMIS is the use of the event/action-paradigm. This feature is used here
to execute actions when the occurrence of a specified event is detected. For that, we have to collect the
requests that describe the event to be detected and the corresponding actions to be executed. Thus,
before distributing the sub-DFGs, which can be evaluated on another component of the OCM-G, the
OMIS requests for all probe events and for all data providers will be collected. When the occurrence
of an event within a data provider on a remote host is detected, the corresponding parent dataflow
node in GPM will be notified.
When a single probe event occurs, there could be multiple actions performed, even at different
components of the OCM-G, thus the information to be gathered for every probe event should contain
the access location of the actions to be performed. As a result, two types of actions are to differentiate:
actions that are going to be performed at the components where the events occur and actions that can
be executed only on G-PM. The latter occurs whenever we have the probe and the metrics nodes on
different components of OCM-G or when the metrics node cannot be evaluated on one specified node,
as it needs different processes on different components of the OCM-G. Unfortunately, it is impossible
to define the probe events at this stage in the former case, since the DFG token identifying the remote
host component is not known yet. Thus, we have to gather all the information and define the probe
event request after the whole sub-DFG has been distributed. To define requests to such probe events,
we have to separate the actions to perform into two categories: actions to be performed on the node
where the occurrence of the event is detected and the actions that should be executed on another
component of OCM-G.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 45 / 56

In addition to those conditional requests stated above, there are unconditional requests, which merely
execute actions without detecting the occurrence of any event. Those unconditional requests are used
to create and add sub-DFGs on the appropriate host and to read active measurements that are not in G-
PM. All those requests can only be defined after the distribution of sub-DFGs.

2.2.3.4.3. Sending the Sub-DFGs to their remote hosts

After the construction of the main-DFG in G-PM, the access location of the sub-DFG will be
determined. The determination depends on the access location of probes and metrics. Built-in metrics,
which need processes located on different nodes, can obviously be evaluated only in G-PM. A sub-
DFG, which has metrics nodes and the corresponding probe nodes on a different host will also be
evaluated globally.

Figure 2-16: Creating a dataflow node in GPM to reassemble the result values from a remote host.

The sub-DFG that can be evaluated locally will be serialized to a string and sent to these components
with the help of the following OMIS request.

 hlac_create_dfg ([<string representing the remote host>])

This unconditional request service creates an empty DFG on a remote host when this remote host is
requested for the first time. The parameter of this OMIS service is a list of tokens which identify the

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 46 / 56

remote hosts, where a new empty DFG will be created. This service returns a token, which will be
used to add sub-DFG to the a-priori created DFG instead of creating a new one on the same remote
host. To add a sub-DFG, we use the following request.

 hlac_add_dfg (<DFG token>, <string form of the subDFG>)

When two sub-DFGs belonging to the same components of the OCM-G share some DFG components,
these components will be identified on the remote host and will be shared there further, in order to
avoid creating the same kind of DFG components on the same components of the OCM-G. After
sending a sub-DFG to its appropriate host, a new dataflow node will be created to replace/represent the
sub-DFG in GPM as shown in the following Figure:
 This dataflow node will be notified when a result packet is detected at the corresponding data provider
on the remote host. The detection of this event will be handled with the OMIS service request shown
as follows:

 hlac_dfg_fifo_read(<DFG token>, <index of the data provider>);

This notification is possible, since these OMIS requests are attached to the data providers before the
sub-DFGs are sent to their appropriate hosts as described above . The first parameter of this request is
again the DFG token, which is used to identify the remote host of the sub-DFG. These events will be
triggered when the corresponding data provider with specified number (index) as the second parameter
of the request receives a result measurement on the specified host
When this event is detected, the OMIS request service

 hlac_dfg_fifo_has_value(<DFG token>, <index of the data provider>);

will be used to call the callback function of the dataflow node representing this sub-DFG in GPM.
This data flow node in GPM will forward the result packet to its corresponding data provider. Thus,
the last two OMIS service requests represent the use of event/action-paradigm of the OMIS as
mentioned above.
Through distributing the sub-DFG to their appropriate hosts and connecting their data providers with
the corresponding data flow nodes in GPM, we build a virtual network. With this efficient distributed
implementation applications can be monitored with minimal additional overhead.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 47 / 56

2.2.4. The class diagram of the UIVC component

The class diagram of the UIVC component is composed of the classes representing the main elements
of the G-PM user interface. The public members of the classes illustrated in the diagram are in
principal associated with the commands of the main menu of the application, while the members
associated with the tasks of the widget library, such as drawing a window or passing a control flow to
a window are not in scope of the document.

EditASLWindow
EditASLWindow()
EditASLWindow(metric : Metrics)

VisualizationDefinitionWindow

VisualizationDefinitionWindow(spec :
getNewVisualization() : VisualizationWindow

VisualizationWindow
start()
stop()
updateInterval(newInterval : int)
updateIntervalHalf()
updateIntervalDouble()
raise()
getName() : String

VisualizationsListBox
newDisplay(measurements :
removeDisplays()
start()
stop()
updateInterval(newInterval : int)
updateIntervalHalf()
updateIntervalDouble()
raise()

0..*

1

0..*

1

0..*

1

0..*

1

MeasurementDefinitionWindow

MeasurementDefinitionWindow()
MeasurementDefinitionWindow(ActiveMeasurement
getNewMeasurement() : MeasurementSpec

ActiveMeasurement
1..*

1

1..*

1

MeaurementsListBox
newMeasurement()
change()
remove()
sort(type : int)
moveToTop()
getSelectedMeasurements() :

0..*

1

0..*

1

MeasurementSpec

0..* 10..* 10..*1 0..*1

MeasurementSpecList

0..*

0..*

0..*

0..*

Figure 2-17: Class diagram of the User Interface and Visualization Component (UIVC)

The classes of the UIVC are illustrated in Figure 2-17. The classes MeasurementsListBox and
VisualizationsListBox correspond to the elements of the main program window. These classes are
responsible for handling the commands from the submenus “Measurements” and “Displays”
respectively. The MeasurementsListBox class contains objects of the MeasurementSpec class as list
entries, while the VisualizationsListBox class contains objects of the VisualizationWindow class as list
entries.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 48 / 56

The classes MeasurementDefinitionWindow and VisualizationDefinitionWindow are associated with
the “Measurement Definition” and “Visualisation Definition” windows respectively. These classes are
responsible for handling the process of defining the properties of the new measurements and displays.
These properties are reflected in the variables of the MeasurementSpec and the VisualizationWindow
classes respectively.

The VisualizationWindow class is responsible for handling the showing and manipulation of the
“Visualization Window”. Via the list of objects of ActiveMeasurement class, it also controls the
running measurements associated with a display. This class is an abstract class, having a separate class
inherited for each particular visualization type, such as e.g. “bar-graph”.

The EditASLWindow class is associated with the “Edit custom metric” window. The class is
responsible for enabling the editing of the custom metric text. It also handles, with a help of HLAC
component classes, the process of activating and saving the edited metric.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 49 / 56

3. PRODUCT TESTING

3.1. PMC
The PMC testing protocol was designed to evaluate the behaviour of the G-PM tool under measuring
values based on different metrics. For each of the metrics a dedicated application, that shows a
predetermined performance behaviour in the context of the measured metric, has been created. This
applications has been used to conduct the black-box testing of the PMC subsystem.

During the black-box testing the following issues have been taken into account:

- the correlation between real (known a priori) performance characteristics of the application
and the characteristics observed with the G-PM tool,

- the stability of the G-PM tool regarding interactions with the user interface and during the
performance measurement process,

- the CPU load of the machine the G-PM tool is running under measurement involving
processing of large amount of measured data.

Additionally during the tests, all the communication between the OCM-G and the G-PM was logged
and offline analysis was done. The following issue has been taken into account:

- the use of correct OCM-G objects (e.g. counters or integrators) and commands for a specified
metric,

- the interoperability between the G-PM and the OCM-G with respect of possible deadlocks,
and/or inefficiency within the implemented communication protocol.

3.2. HLAC
The HLAC has been tested both via black box and grey box testing. A list of PMSL specifications has
been assembled as test cases. Listing these test cases here is beyond the scope of this manual,
however, the file is a part of the G-PM source code: it is located in src/hlac/example_specs.
During testing, this file is loaded into G-PM and measurements based on the specified metrics are
defined. The tests are mainly based on debug output which is not normally switched on. In particular,
when a PMSL specification is parsed, the HLAC prints the resulting intermediate representation (i.e.,
the DAG). When a measurement based on a user-defined metrics is defined, the HLAC prints

- the partially evaluated intermediate representation (which is a DAG, too),
- the data flow graph (DFG) created from the partially evaluated intermediate representation,
- the sub-DFGs, which result when the evaluation has been distributed.

In addition, all the requests send to the OCM-G are logged.
This information is currently inspected and verified manually. In order to support this task, a graphical
presentation of the DAGs and DFGs can be created.
Due to the complexity of the logged data, a fully automatic grey box testing is not yet feasible. It is,
however, possible to run automated black-box tests of G-PM (including the HLAC). This is supported
by a command line version of G-PM, which reads user-defined metrics and measurement
specifications from files and stores the measurement results in a file. Together with a simulation of the
OCM-G monitoring system (directory src/omis-dummy), reproducible results can be obtained.
They are compared to the expected results using a simple PERL script. This test environment is
available in the test directory. An automatic test can be started using ‘make test’.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 50 / 56

4. CONTACT INFORMATION AND CREDITS
The Task 2.4 Leader is:

Wlodzimierz Funika funika@uci.agh.edu.pl
The Task 2.4 team consists of:

• Roland Wismueller roland.wismueller@uni-siegen.de
• Hamza Mehammed mehammed@in.tum.de
• Tomasz Arodz tomaro@student.uci.agh.edu.pl
• Marcin Kurdziel marcink@pds.net.pl

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 51 / 56

5. GNU GENERAL PUBLIC LICENSE, VERSION 2, JUNE 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

 The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

 When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

 To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

 We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

 Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and modification follow.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 52 / 56

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in

any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files

and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,

when started running for such interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and a notice that there is no
warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, does not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 53 / 56

License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be

distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a

charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License to

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 54 / 56

do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not distribute the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or

by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 55 / 56

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.
 To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>
 This program is free software; you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

DEVELOPER MANUAL

G-PM
WP2.4

CG2.4.1-v1.2-CYF-G-
PMDeveloperManual.doc

PUBLIC 56 / 56

 This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and
you are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w' and
`show c'; they could even be mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision'
(which makes passes at compilers) written by James Hacker.
 <signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

