DEVELOPER MANUAL

CcrigssGd MARMOT

------ WP2.2

Cressaid
DEVELOPER MANUAL

WP2.2 MPI Code Debugging and Verification (MARMOT)

Document Filename: CG2.2-v0.1-UST001-MARMOTDeveloperManual-

vl.1.12.doc

Work package: WP2.2 MPI Code Debugging and Verification
(MARMOT)

Partner(s): USTUTT, CSIC

Lead Partner: USTUTT

Config ID: CGZ.Zévo.1—UST001—MARMOTDeveIoperManual—
v1i.1l.1

Document classification; PUBLIC

Abstract:
This is the developer manual for the MPI analysis and checking tool MARMOT.

CG2.2-v0.1-UST001- PUBLIC
MARMOTDeveloperManual-
v1.1.12

1/45

DEVELOPER MANUAL

CrgssG-1d MARMOT
______ WP2.2
Document Log
Version Date Summary of changes Author
First draft. .
01 20/12/2004 Section 2.3 is not finished yet. Bettina Krammer
26/01/2005 | Verified by the QE Robert Pajak

CG2.2-v0.1-UST001-

MARMOTDeveloperManual-
v1.1.12

PUBLIC

2/45

DEVELOPER MANUAL

CcrigssGd MARMOT
______ WP2.2
CONTENTS

LIST OF FIGURESottt ettt e e e et e e s bt e e e e bt e e e e eab e e e s st eeeeanbeeeesabeeeesbbeeesanteeeesnnees 4
(O(@ oA = T L I N[O N I T 5
LN IO 11 L O 1 1 T\ 6
1.1. INTRODUCTION TO MPI STANDARDuutttiiiiiiiiiitiitiie e iitbere e s e et sebbb e e s s e st seb bbb e e e e e s s s asbbbasaeesssssbbbasesesssssstes 6
1.2. INTRODUCTION TO MPI CHECKING TOOLSciiiittttiiiei it iiitiriiee e et seibtrie s e e s sebbbbaessesssesabtbasssessssssbbssesesssssanses 6
1.3. INTRODUCTION TO MPI CHECKING TOOL MARMOT ...ttt aaes 7
1.4. ABBREVIATIONS AND ACRONYMSiiitttteiteeeiiiitreeeeeeesiiitrsseessessiaissssessesssmisssesssesssamssrssssessssimssssessssssinsses 7
1.5. REFERENCES AND SOURGCE CODEeceeiitiiiiiteieeiitieeeeeteeessteeeessttesessstesesssbesessaseessssseesessssesessseesssssenessssenes 7
IMPLEMENTATION STRUGCTURE ...ttt ettt ettt e e et e e e bt e s st e e e s sab e e e s sbaa s s sbanasssabaeeas 9
ST g =] 010 [on B O £ = OF X = U 10
1.7. PRODUCT COMPONENT IMIODEL .ccieiiittteiiieieesieittteet e e e s s estatttessesssestatbestsasssesastbatasasssesssbbasssasssesssbesesasssssasses 11
1,70 DEDUG SEIVET ...ttt bbbt bbbt bbbttt 11
1.7.2. DEDUQG CHIBNT ...ttt bbbt bbbt e e e bbb e s bt bt e b e bt eb e e e et e e sbe b 11
1.8. DETAILED IMPLEMENTATION IMODEL ..uuvviiiiiiiiiitiiiiiice e s seititbit s e e s s e sibbbe e s s e s s s e sabbbaaesasssesabbbaaesasssssabbbasssasssssannns 12
1.8.1. Errors detected DY MARMOT ..ottt sttt bbb bttt e e b e b e e 12
I T B T o100 LT =T O o TSSO 20
1.8.3. Space, Object and DErived CIaSSES........cicviiiieieieeiieiesese e srese e e ste e s testesresreeseeseeseebeseesreseeans 20
1.9. HOW TO ADD NEW CALLS AND CLASSESccutiieiitteieeeiteeeesieeeesetteeesstesssssaeesssssessssssasssssesssssssessssssssssssens 38
O O o= o o T o N =120 =R 39
00 0 0 O 111 0| S 39
1.20.2. CONFIGUIALION ...ttt bbbt bbbt b et et b et b 39
1.11. FURTHER GUIDELINES FOR DEVELOPMENT ...uuttttiiiieeiiiittteitsesssassstestsessseiisssssssesssssssssssssessssssssssssssssssissnns 39
RODUCT TESTINGttt et e et e e e s bt e e s sab e e e s sabb e s e e baeeessbbaessssbbesssbeaesssabeeesssbeseanns 40
CONTACT INFORMATION AND CREDITS ...ttt ettt ertee e s sabae e s eaan e 42
THE GPL LICENSE AGREEMENT ...ttt ettt ee e s e e e atte s s s aaea e s erb e e e sentee e e sanees 43
CG2.2-v0.1-UST001- PUBLIC 3/45

MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

LIST OF FIGURES

figure 1 Design Of MARIMOToiiiiiiiie ettt bbbttt b et ene b 9
figure 2 HOW 10 USE MARMOT ...ttt e be e be e e e te e sreenreesneeenne e e 11
LT LU R O TSI o Lot ST SRR 24
FIQUIE 4 Class COIECLIVEoviii ettt be et e taesaesreenaeare s 27
figure 5 Class CommunicatorNANAIET............couiiiiie e 28
FIQUIE B ClaSS CAITESIAN.ecueiieeiiieie ettt ettt ettt e be et e aesrees e e steeneentesteeneeneesreeneenneas 29
LT[R O F: T €] o] o TSROSO 30
figure 8 Class INterCOMMUNICALONS.cciie ittt e st e sne e e e e nne s 30
figure 9 Class ENVIFONMENT ..ot 31
figure 10 Class EXTNANUIEIScvcviiiiiccie ettt sttt e s e besre et e beenaesaesreenaenre s 31
Figure 11 Class GrOUPCONSIIUCTONeiieiiiteeie st etieieste et et e et eesee et e e seeeseentesseeeesneaseeseesneeneeneeas 32
figure 12 Class GroUPNANGIET...........coiiiiiie e 33
FIQUIE 13 ClaSS PrODESot s e e te e be e sre e nreesneeenee e 33
LT LU B O o w2 o SR ORRPRRRN 34
figure 15 Class COMPIELIONci ittt ettt e b e taesaesre s aenre s 35
FIQUIE 16 ClaSS INILIALOTvieieeiee e e re e s re e st e s aa e s e e s e e te e teesreenreesnneenneenes 36
FIGUIE 17 CIASS STAIS..... ettt bbb bbbttt bbb 37
FIGUIE 18 ClaSS TOSES .uviiiitietiiite it et sttt ettt et e et e et e et e st e b e be et e s b e e teesbesbeess e besseesesbessaesaesreeneenreas 37
Figure 19 Class TYPECONSIIUCTONSeiueeeiieeeieieeeteeie st et etesee e e steeteeseeseeeseeseesseeseesbesneensesseaneeseeesaeneeas 38
figure 20 Class TYPENANAIETSc.oiiiiiiiieie e 38
CG2.2-v0.1-UST001- PUBLIC 4145

MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

COPYRIGHT NOTICE

Copyright (c) 2005 by High Performance Computing Center Stuttgart (HLRS), affiliated with
University of Stuttgart. All rights reserved.

Use of this product is subject to the terms and licenses stated in the GPL license agreement, see
Section 6 for details.

This research is partly funded by the European Commission 1ST-2001-32243 Project “CrossGrid”.

CG2.2-v0.1-UST001- PUBLIC 5/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

INTRODUCTION

1.1. INTRODUCTION TO MPI STANDARD

The Message Passing standard MPI has been passed to increase the portability of message passing
applications, by adopting standardized interfaces for the communication. Among the key aspects of
MPI are:

e Definition of C and Fortran77 API (MPI-1) respectively C++ and Fortran90 APl (MPI-2).

e Additionally to the transfer of simple byte-streams, MPI introduces the concept of Datatypes
for the communication, which gives the user the possibility to pass heterogeneity aspects in
Grid-computing (partially) to the MPI library.

e MPI defines a wide range of point-to-point operations, giving the user the flexibility to choose
the one fitting best to the application. Among the supported methods are blocking and non-
blocking operations (identified by so-called Requests), buffered and synchronous send modes,
and persistent communication.

e MPI introduces a flexible grouping concept based on Communicators, providing a pre-defined
group called MPI_COMM_WORLD, which includes all processes started.

e Additionally to point-to-point operations, MPI abstracts several typical communication
patterns to so-called Collective Operations, giving the MPI library the possibility to optimize
these communication patterns.

The MPI standard has been extended in 1997 by the MPI-2 document, which defines additional
functionality (e.g. one-sided communication, dynamic process management and parallel file 1/0). The
MPI 1.2 standard is described in the MPI 2.0 document. It is basically the 1.1 version with a number
of clarifications and bug fixes. Since the number of full MPI-2 implementations is currently very
limited, e.g. there is no freely available implementation for Linux, the version 2.0 of the standard has
not yet been widely adopted by the user community. Therefore, the verification tool presented in this
document will be limited to the versions 1.1 and 1.2 of the standard.

1.2. INTRODUCTION TO MPI CHECKING TOOLS

The Message Passing Interface (MPI) is a widely used standard for writing parallel programs.
However, the MPI-1.2 standard, with its 129 calls, has a size and complexity that makes it possible to
use the MPI API incorrectly. According to our experience there are several reasons for this:

e Developers do not only have to face all the problems that occur in serial programming. In
addition, parallel applications get more and more complex and especially with the introduction
of optimisations like the use of non-blocking communication also more error prone.

e MPI programs do not always behave deterministically. Deadlocks or race conditions may
appear, depending on the platform environment or on the MPI implementation.

e The MPI standard leaves many decisions to the implementation, e.g. whether or not a standard
communication is blocking. This implementation-defined behaviour may cause problems
when porting an application from one platform to another, for example, when porting an
application from a local platform to the CrossGrid testbed.

Debugging MPI programs has been addressed in various ways. The different solutions can be roughly
grouped in four different approaches: classical debuggers, special MPI libraries and other tools that
may perform a run-time or post-mortem analysis.

e Classical debuggers have been extended to address MPI programs. This is done by attaching
the debugger to all processes of the MPI program. There are many parallel debuggers, among
them the very well-known commercial debugger Totalview. The freely available debugger

CG2.2-v0.1-UST001- PUBLIC 6/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL
CcrigssGd MARMOT

______ WP2.2

gdb has currently no support for MPI, however, it may be used as a back-end debugger in
conjunction with a front-end that supports MPI, e.g. mpigdb. Another example of such an
approach is the commercial debugger DDT by streamline computing, or the non-freely
available p2d2.

e The second approach is to provide a debug version of the MPI library (e.g. mpich). This
version is not only used to catch internal errors in the MPI library, but it also detects some
incorrect usage of MPI by the user, e.g. a type mismatch of sending and receiving messages.

e Another possibility is to develop tools dedicated to finding problems within MPI applications.
At present, three different message-checking tools are under active development: MPI-
CHECK, Umpire and MARMOT. MPI-CHECK is currently restricted to Fortran code and
performs argument type checking or finds problems like deadlocks. Like MARMOT, Umpire
uses the profiling interface. Unfortunately, Umpire is not freely available. These three tools all
perform their analysis at runtime.

e The fourth approach is to collect all information on MPI calls in a trace file, which can be
analysed by a separate tool after program execution. A disadvantage with this approach is that
such a trace file may be very large. However, the main problem is guaranteeing that the trace
file is written in the presence of MPI errors, because the behaviour after an MPI error is
implementation defined.

1.3. INTRODUCTION TO MPI CHECKING TOOL MARMOT

The MPI verification tool is provided as a library that implements the MPI standard. More precisely, it
uses the MPI profiling interface to intercept every MPI call made by the application. The MPI
profiling interface gives the user the possibility to replace MPI calls by routines with different
functionality, and provides a second, name shifted version of all MPI routines. The verification tool
uses this interface to check the MPI calls for consistency and correctness before passing it to the real
MPI library for processing. The system will therefore consist of two major parts:

1. The implementation of the API defined in the MPI standard. As required by the MPI standard
this API should be a library. The MPI calls of the applications are caught and passed to the
core MPI verification tool through this library.

2. The core MPI verification tool. This tool provides the real verification and debugging
functionality. It is implemented in C++. A detailed description is provided below. Since two
language bindings are defined by the MPI standard, these two language bindings have to be
implemented (C and Fortran). The C interface is implemented in C++, but providing a C
interface to external programs, i.e. implementing the C binding of MPI. The Fortran interface
is implemented as a wrapper to the C interface. Thus we avoid implementing the core
functionality twice. Special care has to be taken for the implementation of checks that are
different between the C and Fortran implementation, for example checks concerning
datatypes. Some of the checks implemented in MARMOT are also performed by MPI
implementations. However, such checks are not required by the MPI standard, therefore an
implementation of the MPI standard does not need to include these tests and, for the sake of
performance, expensive checks are usually not implemented.

1.4. ABBREVIATIONS AND ACRONYMS
MPI Message Passing Interface

APl Application Programming Interface
MD Migrating Desktop

1.5. REFERENCES AND SOURCE CODE

CG2.2-v0.1-UST001- PUBLIC 7145
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

------ WP2.2

e MARMOT’s source code can be found at
http://savannah.fzk.de/cgi-bin/viewcvs.cqgi/crossgrid/crossgrid/wp2/wp2_2-verif/srtc/ MARMOT/
¢ MARMOT’s RPMs can be found at
http://gridportal.fzk.de/distribution/crossgrid/autobuilt/i386-rh7.3-gcc3.2.2/wp2/RPMS/

e The latest tag is currently v1.1.12.

e More information can be found at MARMOT’s homepage
http://www.hlrs.de/organization/tsc/projects/marmot
especially on the publications site
http://www.hlrs.de/organization/tsc/projects/marmot/pubs.html

CG2.2-v0.1-UST001- PUBLIC 8/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CrgssSG-d MARMOT

______ WP2.2

IMPLEMENTATION STRUCTURE

MARMOT does not change the MPI library or the application. We use the profiling interface that is
defined in the MPI standard 1.2, but probably not all users know this profiling interface or have ever
used it. The idea of the profiling interface is simple: any MPI call MPI_Foo can also be invoked by
PMP1_Foo, they are exactly the same. This allows users to define their own MPI routines, and that's
also what MARMOT does: to put it in a simple way, we redefine MP1_Foo by

{
do the MARMOT checks;

PMP1_Foo;

}

Thus we check the MPI calls made by the application and pass them to the underlying MPI library.
Marmot is just an addition to the MPI library, not a replacement.

MARMOT also has its own book-keeping of resources such as datatypes, groups, communicators, etc.
This enables the tool to check if these resources are used in a correct way, for example if they are
constructed, used and freed properly.

MARMOT requires an additional process (our debug server), which is responsible for tasks that
require a global view, e.g. deadlock detection. Local tasks such as the verification of resources are
performed on the client side. The additional process is caught automatically by the tool, the user only
has to run the application with one additional process. In order to ensure that the additional debug
process is transparent to the application, we map MPI_COMM WORLD to a MARMOT
communicator that contains only the application processes. Since all other communicators are derived
from MPI_COMM_WORLD they will also automatically exclude the debug server process. The
figure below shows a graphical representation of the way MARMOT works.

Application

Profiling Interface

MARMOT
Core Tool
i~]
Client Side Server Side
figure 1 Design of MARMOT
CG2.2-v0.1-UST001- PUBLIC 9/45

MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

WP2.2

The output of MARMOT is a human readable log file. MARMOT's functionality includes:

MARMOT is able to keep track of the proper construction, usage and freeing of all MPI
resources, such as communicators, groups, datatypes, etc. It also checks if requests and other
arguments (tags, ranks, etc.) are used correctly. The main functionality has been implemented
for the C language binding, whereas the functionality for the Fortran language binding is
obtained through a wrapper to the C interface. Special attention has to be paid to the
verification of the datatypes because they are one of the major differences between the C and
the Fortran language binding.

MARMOT issues warnings if the application relies on non-portable MPI constructs, and error
messages if erroneous calls are made. Although high-quality MPI implementations detect
some of these errors themselves, there are many cases where they do not give any warnings.
For example, non-portable implementation-specific behaviour is not indicated by the
implementation, nor are checks performed that would decrease the performance too much,
such as consistency checks. MPI implementations tolerate some errors without warnings or
crashing, simply giving wrong results. Without the help of a tool like MARMOT, users or
developers may thus have a hard time finding these errors.

Possible race conditions can be identified by locating the calls that may be sources of race
conditions. One example is the use of a receive call with the wildcard MPI_ANY_SOURCE
as source argument or the wildcard MP1_ANY _TAG as tag argument. One may argue that one
does not need a tool to detect this sort of argument as a simple grep command on the source
code would give the same result. However, a search command does neither show the
execution flow nor will it be able to detect this argument if the application takes functions
from some other library with hidden MPI calls. Another source of race conditions is the use of
random numbers.

The tool also contains a mechanism to automatically detect deadlocks and notify the user
where and why these have occurred. In general, deadlocks are caused by the non-occurrence
of something else, for example mismatched send/receive operations or mismatched collective
calls. Currently the deadlock detection is based on a timeout mechanism. MARMOT's debug
server surveys the time each process is waiting in an MPI call. If this time exceeds a certain
user-defined limit on all processes at the same time, the debug process issues a deadlock
warning and allows the user to trace back the last few calls on each node.

MARMOT supports the complete MPI-1.2 standard, although not all possible tests (such as
consistency checks) have been implemented so far. It can be used with any standard-
conforming MPI implementation and may thus be deployed on any development platform
available to the programmer

1.6. PRODUCT USE CASES

Users of MARMOT just have to relink their application with the MARMOT libraries and run the
application with one additional process.

CG2.2-v0.1-UST001- PUBLIC 10/45
MARMOTDeveloperManual-

v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

MPI application to verify

Rebuild application with

MARMOT
A4
Run with additional process to Fix bugs,
generate logfile modify application

Analyze logfile

yes

Errors/
problems

no

Build normal MPI application
for production

figure 2 How to use MARMOT

1.7. PRODUCT COMPONENT MODEL

1.7.1. Debug Server

When an MPI routine is called on an application process, the debug server is informed about the
details of the communication (e.g. sender, receiver, message-length, datatype, tag, communicator). The
necessary communication between the debug server and the other processes is done with MPI. The
debug server has then the possibility to compare the input of all processes. Therefore, the debug server
can execute the following tasks:

e Control the execution flow: it is possible that the server does not only monitor the program
flow, but does also control which process starts the next MPI call. Since this imposes a huge
performance penalty, this will be a user option.

e Signal conditions, e.g. dead-locks.

e Check matching send/receive pairs for consistency: within the MPI standard a message
matches if the source, tag and communicator match. It is the responsibility of the user to
provide a corresponding datatype on the sender and receiver. The tool will check whether this
is the case.

e Output log (report errors, etc.).

1.7.2. Debug Client

CG2.2-v0.1-UST001- PUBLIC 11/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

The debug client is the component that has the task to check for local consistency on each MPI
process.

Examples of Client Checks
e Verification of MPI_Request usage.
e Invalid recycling of active request.
e Invalid use of unregistered request.
e Warning if number of requests is zero.
e Warning if all requests are MPI_REQUEST_NULL.
e Verification of tag range.
o Verification if requested cartesian communicator has correct size.
e Verification of communicator in cartesian calls.
e Verification of groups in group calls.
o Verification of sizes in calls that create groups or communicators.
e Verification if ranges are valid (e.g. in group constructor calls).
e Verification if ranges are distinct (e.g. MPI_Group_incl, -excl).
e Check for pending messages and active requests in MPI_Finalize.
e A detailed enumeration of the checks may be found below.

1.8. DETAILED IMPLEMENTATION MODEL

1.8.1. Errors detected by MARMOT

The file mpo-enums.h contains the enumeration we use for classifying the errors/warnings/notes
issued by MARMOT. The enumeration values describe the errors/warnings/notes Marmot checks and
are used as return codes for the check methods, for example, checkBlocklength() may return
MARMOT_SUCCESS, MARMOT_ERR_BLOCKLENGTH_NEG or MARMOT_WARN_BLOCKLENGTH_ZERO.
The nature of the error should be self-evident by the enumeration value, i.e. it should be clear without
any further explanation that MARMOT_ERR_BLOCKLENGTH_NEG indicates that it is an error to use a
negative blocklenth here whereas MARMOT_WARN_BLOCKLENGTH_ZERO indicates that using a
negative blocklength in this context is not prohibited by the standard but may be an error and is thus
issued as a warning.

If new check methods are added to MARMOT’s functionality, it should be checked if it can be
desribed by an existing enum value or if a new enum value should be added.

/** enum for MARMOT"s error return codes.
* If you add a new error code, choose a descriptive name.
* Distinguish between MARMOT_ERR_FOO, MARMOT_WARN_FOO and
* MARMOT_NOTE_FOO.
*/

enum MARMOT_ERR_CODES

{

//
// MPI-1.2

// error types in

// alphabetical order
//

MARMOT_SUCCESS = 0, // successful return code
MARMOT_ERR_UNDEFINED, // undefined error

CG2.2-v0.1-UST001- PUBLIC 12/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcCressar-d MARMOT
- WP2.2
MARMOT_ERR_MARMOT, // implementation error in MARMOT

// blocklength
//

// blocklength errors
MARMOT_ERR_BLOCKLENGTH_NEG, // blocklength is negative

// blocklength warnings
MARMOT_WARN_BLOCKLENGTH_ZERO, // blocklength is 0O

// buffer

//

// buffer errors

// MARMOT_ERR_BUFFER, // invalid buffer pointer

// MARMOT_ERR_TRUNCATE, // message truncated on receive

MARMOT_ERR_BUFFER_ATTACHED, // already a bufffer attached
MARMOT_ERR_BUFFER_NOT_ATTACHED, //no buffer attached

// color
//

// color errors
MARMOT_ERR_COLOR_NEG, // color is negative

// color warnings
MARMOT_WARN_COLOR_UNDEFINED, // color is MPI_UNDEFINED

// communicator
//

// communicator errors

MARMOT_ERR_COMM_NULL, // communicator is MPI_COMM_NULL
MARMOT_ERR_COMM_NOT_VALID, // communicator is not valid
MARMOT_ERR_COMM_NOT_CARTESIAN, // communicator is not cartesian
MARMOT_ERR_COMM_NOT_GRAPH, // communicator is not cartesian

MARMOT_ERR_COMM_NOT_INTERCOMM, // communicator is not intercommunicator

MARMOT_ERR_COMM_INTERCOMM, // communicator is intercommunicator

// communicator warnings

MARMOT_WARN_COMM_NOT_WORLD, // communicator is not MP1_COMM_WORLD

MARMOT_WARN_COMM_NULL, // communicator is MPI_COMM_NULL

// coordinate
/7

// coordinate errors
MARMOT_ERR_COORD_NEG, // coordinate is negative
MARMOT_ERR_COORD_TOO_BIG, // coordinate is out of range

// count
/7

// count errors

MARMOT_ERR_COUNT_NEG, // count is negative
MARMOT_ERR_COUNT_ZERO, // count is O

// MARMOT_ERR_COUNT_ARRAY_NEG, //

// count warnings

MARMOT_WARN_COUNT_ZERO, // count is 0O
MARMOT_WARN_COUNTS_NOT_EQUAL, // counts are not equal
MARMOT_WARN_COUNT_UNDEFINED, // count is MPI_UNDEFINED

// datatype
//

// datatype errors
MARMOT_ERR_TYPE_NULL, // datatype is MPI_DATATYPE_NULL
MARMOT_ERR_TYPE_NOT_VALID, // datatype is not valid

MARMOT_ERR_TYPE_NOT:COMMITTED, // datatype is created, not committed

MARMOT_ERR_TYPE_C, // datatype is C datatype

CG2.2-v0.1-UST001- PUBLIC
MARMOTDeveloperManual-

v1.1.12

13/45

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

MARMOT_ERR_TYPE_F, // datatype is Fortran datatype
MARMOT_ERR_TYPE_REDUCTION_C, // datatype is for reduction function (C)
MARMOT_ERR_TYPE_REDUCTION_F, // datatype is for reduction function (F)
MARMOT_ERR_TYPE_OPTIONAL_C, // datatype is optional (C)
MARMOT_ERR_TYPE_OPTIONAL_F, // datatype is optional (F)
MARMOT_ERR_TYPE_CONSTR_DERIVED, // datatype is for constructing

// derived datatypes
MARMOT_ERR_TYPE_LB, // datatype is MPI_LB
MARMOT_ERR_TYPE_UB, // datatype is MPI_UB

// datatype warnings

MARMOT_WARN_TYPE_REDUCTION_C, //datatype is for reduction function (C)
MARMOT_WARN_TYPE_REDUCTION_F, //datatype is for reduction function (F)
MARMOT_WARN_TYPE_OPTIONAL_C, // datatype is optional (C)
MARMOT_WARN_TYPE_OPTIONAL_F, // datatype is optional (F)

// datatype notes
MARMOT_NOTE_TYPE_NULL, // datatype is MPI_TYPE_NULL
MARMOT_NOTE_TYPE_ALREADY_COMMITTED_C, // datatype is already

// committed (C)
MARMOT_NOTE_TYPE_ALREADY_COMMITTED_C_AND_F, // datatype is already

// committed (C and F)

MARMOT_NOTE_TYPE_ALREADY_COMMITTED_F, // datatype is already

// committed (F)

// dimension
/7

// dimension errors

MARMOT_ERR_DIM_NEG, // dimension is negative
MARMOT_ERR_DIM_TOO_BIG, // dimension is too big
MARMOT_ERR_NODES_NEQ_PRODUCT_DIMS, // nodes are not a multiple of dims

// dimension warnings
MARMOT_WARN_DIM_ZERO, // dimension is zero

// displacement
//

// displacement errors
MARMOT_ERR_DISPLACEMENT_OVERRIDES_DATA, // displacement overrides data

// displacement notes
MARMOT_NOTE_DISPLACEMENT_READS_DATA, // displacement reads data /

// holes read from other nodes
MARMOT_NOTE_DISPLACEMENT_OVERRIDES_DATA, // displacement overrides data
MARMOT_NOTE_DISPLACEMENT_DATA_SENT_TWICE, // displacement sends data

// twice
// edge
/7
// edge errors
MARMOT_ERR_EDGE_INVALID, // edge is invalid
MARMOT_ERR_EDGE_NEG, // edge is negative

// errhandler
/7

// errhandler errors
MARMOT_ERR_ERRHANDLER_NOT_VALID, // errhandler is not valid

// errorcode
/7

// errorcode errors
MARMOT_ERR_ERRORCODE_NOT_VALID, // errorcode is not valid

// group
//
// group errors
// MARMOT_ERR_GROUP_NULL, // group is MPI_GROUP_NULL
CG2.2-v0.1-UST001- PUBLIC 14 /45

MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcCressar-d MARMOT
- WP2.2
MARMOT_ERR_GROUP_NOT_VALID, // group is not valid
// group warnings
MARMOT_WARN_GROUP_NULL, // group is MPI_GROUP_NULL
// index
//

// index errors
MARMOT _ERR_INDEX_NEG, // index is negative

// index warnings
MARMOT_WARN_INDEX_LT_SIZE, // index is less than size of communicator

// leader
/7

// leader errors
// Should we also distinguish between errors for remote
// and for local leaders?

MARMOT_ERR_LEADER_ANY_SOURCE, // leader is MPI_ANY_SOURCE
MARMOT_ERR_LEADER_NEG, // leader is negative
MARMOT_ERR_LEADER_OUT_OF_COMM, // leader is out of communicator
// neighbor

//

// neighbor errors

MARMOT_ERR_NEIGHBORS_NEG, // number of neighbors is negative
// operator

//

// operator errors

MARMOT_ERR_OP_NULL, // operator is MPO_OP_NULL
MARMOT_ERR_OP_NOT_VALID, // operator is not valid

// pending messages
//

// pending messages warnings
MARMOT_WARN_PENDING_MESSAGES_LEFT, // pending messages are left

// range
//

// range errors

MARMOT_ERR_RANK_FIRST_NEG, // first rank is negative
MARMOT_ERR_RANK_LAST_NEG, // last rank is negative
MARMOT_ERR_RANK_FIRST_TOO_BIG, // first rank is too big
MARMOT_ERR_RANK_LAST_TOO_BIG, // last rank is too big
MARMOT_ERR_RANK_COMPUTED_NEG, // computed rank is negative
MARMOT_ERR_RANK_COMPUTED_TOO_BIG, // computed rank is too big
MARMOT_ERR_RANK_COMPUTED_TWICE, // rank is computed twice
MARMOT_ERR_STRIDE_NEG, // stride is negative
MARMOT_ERR_STRIDE_ZERO, // stride is zero
MARMOT_ERR_STRIDE_POS, // stride is positive

// rank

//

// rank errors (see also range errors)

// MARMOT_ERR_RANK, // invalid rank
MARMOT_ERR_RANK_NEG, // rank is negativ
MARMOT_ERR_RANK_PROC_NULL, // rank is MPI_PROC_NULL
MARMOT_ERR_RANK_ANY_SOURCE, // rank is MPI_ANY_SOURCE
MARMOT_ERR_RANK_TOO_BIG, // rank is too big

/7 MARMOT_ERR_DUP_RANK,

// MARMOT_ERR_RANK_ARRAY,
// MARMOT_ERR_LOCAL_RANK,
// MARMOT_ERR_REMOTE_RANK,

CG2.2-v0.1-UST001- PUBLIC 15/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CrgssGad MARMOT

WP2.2

// rank warnings
MARMOT_WARN_RANK_ANY_SOURCE, // rank is MPI_ANY_SOURCE

// rank notes
MARMOT_NOTE_RANK_PROC_NULL, // rank is MP1_PROC_NULL

// request
//

// request errors

MARMOT_ERR_REQUEST_COUNT_NEG, // count of requests is negative
MARMOT_ERR_REQUEST_NOT_VALID, // request is not valid
MARMOT_ERR_REQUEST_STILL_USED, // request is still in use
MARMOT_ERR_REQUEST_NOT_PERSISTENT, // request is not persistent
MARMOT_ERR_REQUEST_OUTCOUNT_UNDEFINED, // outcount is MPI_UNDEFINED

// request warnings
MARMOT_WARN_REQUEST_COUNT_ZERO, // count of requests is zero
MARMOT_WARN_REQUEST_NULL, // request is MPI_REQUEST_NULL
MARMOT_WARN_REQUEST_ACTIVE_NOT_PERSISTENT, // request is not persistent

// and active
MARMOT_WARN_REQUEST_ACTIVE_PERSISTENT, // request is persistent and

// still active

MARMOT_WARN_REQUEST_INACTIVE_PERSISTENT, // request is persistent

// and inactive
MARMOT_WARN_REQUEST_OUTCOUNT_UNDEFINED, // outcount is MPI_UNDEFINED

MARMOT_WARN_REQUESTS_LEFT, // requests are left
// size

//

// size errors

MARMOT_ERR_SIZE_NEG, // size is negative

// size warnings

MARMOT_WARN_SI1ZE_ZERO, // size is zero

// tag

/7

// tag errors

MARMOT_ERR_TAG_NEG, // tag is negative
MARMOT_ERR_TAG_TOO_BIG, // tag is too big (> TAG_UB)
MARMOT_ERR_TAG_ANY_TAG, // tag is MPI_ANY_TAG

// tag warnings
MARMOT_WARN_TAG_TOO_BIG, // tag is too big (> guaranteed range,
// but < TAG_UB)

// topology
//

// topology errors (see also dimension errors, coordinates errors)
MARMOT_ERR_TOPOLOGY_NEW_GT_COMM_OLD, // new topology greater than
// old communicator
MARMOT_ERR_TOPOLOGY_CART_NEW_GT_COMM_OLD, // new cartesian topology
// greater than
// old communicator

// topology warnings (see also dimension errors, coordinates errors)
MARMOT_WARN_TOPOLOGY_NEW_LT_COMM_OLD, // new topology smaller than
// old communicator
MARMOT_WARN_TOPOLOGY_CART_NEW_LT_COMM_OLD, // new cartesian topology
// smaller than
// old communicator

// misc
//
// misc
// MARMOT_ERR_PENDING, // Pending request
CG2.2-v0.1-UST001- PUBLIC 16 /45

MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcCressar-d MARMOT
- WP2.2
/7
/7 MP1-2
/7 File 1/0

// not implemented yet
// error types in
// alphabetical order

// amode

// amode errors

// Tile access mode is not the same for all processes
MARMOT_ERR_AMODE_DIFF,

// MPI_MODE_RDONLY 1is specified
MARMOT_ERR_AMODE_RDONLY,

// MPI_MODE_WRONLY is specified
MARMOT_ERR_AMODE_WRONLY,

// exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY
// must be specified

// MARMOT_ERR_AMODE_RDONLY_AND_RDWR,

// MARMOT_ERR_AMODE_RDONLY_AND_WRONLY,

// MARMOT_ERR_AMODE_RDWR_AND_WRONLY,
MARMOT_ERR_AMODE_RDONLY_RDWR_WRONLY_NOT_SET_EXACTLY_ONE,

// MP1_MODE_RDONLY is specified with MPI_MODE_CREATE
MARMOT_ERR_AMODE_RDONLY_AND_CREATE,

// MP1_MODE_RDONLY is specified with MP1_MODE_EXCL
MARMOT_ERR_AMODE_RDONLY_AND_EXCL,

// MP1_MODE_RDWR is specified with MP1_MODE_SEQUENTIAL
MARMOT_ERR_AMODE_RDWR_AND_SEQUENTIAL,

// MP1_MODE_UNIQUE_OPEN is specified
MARMOT_ERR_AMODE_UNIQUE_OPEN,

// MPI_MODE_SEQUENTIAL is specified
MARMOT_ERR_AMODE_SEQUENTIAL,

// MP1_MODE_SEQUENTIAL is specified, but not MPI_DISPLACEMENT CURRENT
MARMOT_ERR_AMODE_SEQUENT IAL_AND_NOT_DISPLACEMENT_CURRENT,

// MPI_MODE_SEQUENTIAL is not specified, but MPI_DISPLACEMENT_CURRENT
MARMOT_ERR_AMODE_SEQUENT IAL_NOT_SET_BUT_DISPLACEMENT_CURRENT,

// amode notes

// amode is MP1_DELETE_ON_CLOSE
MARMOT_NOTE_AMODE_DELETE_ON_CLOSE,

// communicator - see also above
/7

// communicator errors

// communicator is intercommunicator, see above
// MARMOT_ERR_COMM_INTERCOMM,

// data representation
//

// data representation errors

// data representation is not the same for all processes
MARMOT_ERR_DATAREP_DIFF,

CG2.2-v0.1-UST001- PUBLIC 171745
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

// data representation string is larger than MP1_MAX_DATAREP_STRING
MARMOT _ERR_DATAREP_GT_MAX_DATAREP_STRING,

// data representation warnings

// data representation is not large enough
MARMOT_WARN_DATAREP_TOO_SMALL,

// displacement
//

// displacement errors

// displacements in typemap of filetype are negative
MARMOT_ERR_FILETYPE_DISPLACEMENTS_NEG,

// displacements in typemap of Filetype are decreasing
MARMOT_ERR_FILETYPE_DISPLACEMENTS_DECREASE,

// displacement warnings
// values of data in new regions (those locations with displacements

// between old file size and size) are undefined
MARMOT_WARN_DATA_IN_NEW_REGION_UNDEFINED,

// datatype - see also above datatype errors
//

// datatype errors

// datatype has overlapping regions
MARMOT_ERR_TYPE_OVERLAPPING,

// etype - see also above datatype errors

// etype errors

// extent of etype is not the same on all processes
MARMOT_ERR_ETYPE_EXTENT_DIFF,

// etype is not valid, see above data type errors
MARMOT_ERR_ETYPE_NOT_VALID,

// etype has overlapping regions
MARMOT_ERR_ETYPE_OVERLAPPING,

// filetype - see also above datatype errors
//

// Tiletype errors

// extent of hole in the filetype is not a multiple of the extent
// of the etype
MARMOT_ERR_FILETYPE_EXTENT_HOLE_NO_MULTIPLE_EXTENT_ETYPE,

// filetype is not valid, see above data type errors
MARMOT_ERR_FILETYPE_NOT_VALID,

// filetype has overlapping regions
MARMOT_ERR_FILETYPE_OVERLAPPING,

// fTiletype notes

// filetype has holes
MARMOT_NOTE_FILETYPE_HAS_HOLES,

// Filename
/7

// Tilename errors

CG2.2-v0.1-UST001- PUBLIC 18/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL

CressGisd

MARMOT
WP2.2

// Ffilenames do not reference the same file
MARMOT_ERR_FILE_DIFF,

//

MARMOT_ERR_FILE_DOES_NOT_EXIST,

//

//

file does not exist

filename warnings

file still in use

MARMOT_WARN_FILE_IN_USE,

//
//

//
//

//
//

//
//

//

//

//

group - see above

group errors
MARMOT_ERR_GROUP_NOT_VALID,

group warnings
MARMOT_WARN_GROUP_NULL,

info

info errors

// group is not valid

// group is MPI_GROUP_NULL

info entry is not the same for all processes
MARMOT_ERR_INFO_DIFF,

info notes

// implementation is free to ignore info
MARMOT_NOTE_INFO_1GNORED,

//
//

//

//

offset

offset errors

offset is negative

MARMOT_ERR_OFFSET_NEG,

// offset reaches a negative position in the view
MARMOT_ERR_OFFSET_TO_NEG_POS_IN_VIEW,

//
//

//

size

size errors

// size is not the same for all processes
MARMOT_ERR_FILE_SIZE_DIFF,

//

size is negative

MARMOT_ERR_FILE_SIZE_NEG,

//

size notes

MARMOT_NOTE_FILE_SIZE_LT_OR_EQ_CURRENT_SIZE,

//
//

//

misc

misc errors

// request left on file handle, see above
MARMOT_ERR_REQUESTS_NONBLOCKING_LEFT,

// split collective operation left on file handle
MARMOT_ERR_OPERATION_SPLIT_COLLECTIVE_LEFT,

// more than one active split collective operation on file handle
MARMOT_ERR_OPERATION_SPLIT_COLLECTIVE_COUNT_GT_ONE,

CG2.2-v0.1-UST001-
MARMOTDeveloperManual-

v1.1.12

PUBLIC

19/45

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

// no matching begin call
MARMOT_ERR_NO_MATCHING_BEGIN,

// misc warnings

// open file left (after MPI_Finalize)
MARMOT_WARN_FILE_OPEN_LEFT,

// request left on file handle, see above
MARMOT_WARN_REQUESTS_NONBLOCKING_LEFT,

/7 split collective operation left on file handle
MARMOT_WARN_OPERATION_SPLIT_COLLECTIVE_LEFT,

// whence argument is not the same on all processes
MARMOT_ERR_WHENCE_DIFF,

// flag argument is not the same on all processes
MARMOT_ERR_FLAG_DIFF,

// Tile handle argument is not the same on all processes
MARMOT_ERR_FILEHANDLE_DIFF,

MARMOT_LAST_ERR_CODE
}: // end enum MARMOT_ERR_CODES

1.8.2. DebugServer Class
e Purpose: The DebugServer class represents the server for debugging, with the following tasks:
0 Control the execution flow.
0 Detect dead-locks.
0 Check consistency of matching send/receive pairs.
0 Output log.
e Public Methods:
0 DebugServer (Messenger &communication_channel)
sets up server with provided communication_channel.
0 void runMainLoop ()
The loop will never return, but exit from the application on request.

1.8.3. Space, Object and Derived Classes

e The MPO_Space class is the base class at the top of the class hierarchy, see the figure 3 and
the description below. This class does not contain any public methods, but protected methods
and attributes building the bridge between MPI datatypes, communicators, groups, operators
etc. and our MPO datatypes, communicators, etc. For example, all predefined communicators
are automatically inserted in the set our_comms. All newly created communicators are
inserted when created and removed when freed. So we can check if a used communicator is
valid or not.

e The MPO_Object class is derived from the MPO_Space class and contains the three
subclasses MPQO_Callobject, MPO_Typeobject and MPO_State, see below.

o0 All the 129 MPI-1.2 calls have been implemented. All MPI calls are represented as
classes derived from the MPO_Callobject class.

= The hierarchy of the class MPO_Callobject consists of several derived classes
that gather classes representing similar MPI calls, e.g. the class

CG2.2-v0.1-UST001- PUBLIC 20/45
MARMOTDeveloperManual-
v1.1.12

DEVELOPER MANUAL
MARMOT
WP2.2

MPO_Collective is derived from the class MPO_Callobject and contains all
classes representing MPI calls for collective communication (MPI_Bcast
etc.). Thus having 129 classes representing MPI calls plus several base
classes, only the base classes are described in detail below, whereas the MPI
call classes are mentioned by name only. Information on the MPI calls
themselves, on the parameters they take and on the errors that should be
prevented can be found in the MPI standards. For example, when using
MPI1_Bcast the validity of the count, datatype, root and communicator
parameters should be checked.

MPO_Callobject defines the interface and the protocol used in the library
between client and debug server.

The client checks described in section 4 are achieved by implementing

adequate member functions, e.g. checkPrerequisites(), checkTag(),
checkOp(), checkRoot(), checkRank() ...
Advantages:

e The server only handles MPO_Calls (no change necessary if new
calls are implemented).

o Definition of protocol and behaviour of the client in one place.
¢ No need to handle function pointers.

0 The MPO_Typeobject class represents MPI types (communicators, datatypes, groups
and operators). These four types correspond to the classes MPO_Comm,
MPQO_Datatype, MPO_Group and MPO_Op, which are derived from the base class
MPO_Typeobject.

0 The MPQ_State class represents the state of an MPI process, i.e. whether it is
pending, finished etc.

e Ingeneral, classes are forced to implement the following methods:
0 getFamilyld() and getld()

are to provide a unigue identity (a unigque enumeration value) for each family of
objects respectively for each object.

o0 save() and restore()
are responsible for serializing and de-serializing an object to ostream and from

istream.

Additionally, classes representing MPI calls have the following methods:
o Member functions for client checks, e.g. checkPrerequisites() etc.
0 getCallName()
gets the name of the MPI call.
o callNativeMPI()
does the MPI call by using client check functions.

e We need to map MPI communicators to new communicators excluding the debug server. This
mapping can be guaranteed by introducing new types:

o int MPI_Barrier(MPI_Comm comm);
0 int MPO_Barrier(MPO_Comm a_comm){

CG2.2-v0.1-UST001-
MARMOTDeveloperManual-
v1.1.12

PUBLIC 21/45

DEVELOPER MANUAL

CcrigssGd MARMOT

______ WP2.2

return PMPI1_Barrier(a_comm);
}
Mechanism:
0 The mapping is done in the constructor of the MPO_Comm class.

0 A type conversion operator enables that an object of type MPO_Comm can be used
wherever a variable of type MPI_Comm is expected.

0 The declaration of MPO_Barrier guarantees that no invalid communicators are used
inside the profiling interface/debugger.

CG2.2-v0.1-UST001- PUBLIC 22145
MARMOTDeveloperManual-
v1.1.12

crgssGd

DEVELOPER MANUAL

1.8.3.1. Class Space

A= R OBl

A b Lt pand

i

A skt e

A ek D S B b DTy et

“ro-wra_aml

FAT SRR DA _tsla

FA=C R AR Ak gat

[REsel Lo ol v

FAR D RO Faefar mi

WP AP0 EWYSr N ok 0

BT D AR D_Colizetvr

FA= LR = L0y Tl i Tea ol ll"llI

MEL T RU_DaaR s an el -

KO RO s rmad

KSR _orhaindbr

BT D AT DG ol

K WPT_ D A RTETE

WFA-WEA_Gel_prmcessnt nare

WETr B0 5 v el e
a

kR WFT Sraup cande

MR AR Snpmn) e

PAF D PP e _fiTe

M= AP O_Op_C -20lE

UKL _Op e

[l £ Rt PN CY

FAT DAl D st

™ td™ 0 Fmes

RSO A0 PR

KFO-WFC Trp- fred

T BP0 Teamsnnsurks oy

PAR DY FARD Ty pa i

SFORFD _Lnack

A" D _Curn

PO AN D_Ceabaacow

[l X b LT E)

“F-wFr o

CG2.2-v0.1-UST001-
MARMOTDeveloperManual-
v1.1.12

PUBLIC

23/45

Crigs5SaGd DEVELOPER MANUAL

figure 3 Class Space
e Purpose: MPO_Space provides sets to handle communicators, groups and operators and maps
to handle requests, datatypes and errhandlers.
e Public Methods: none.

1.8.3.2. Class Object

e Purpose: MPO_Obiject represents calls, types and messages. All MPO_Objects should be
transferable to and from a stream. The member functions getld(), getFamilyld(), save() and
restore() are intended to provide this functionality. A general description of these functions is
given above in section 7.1.2.

e Public Methods:
o virtual int getld () const=0
o virtual int getFamilyld () const=0
O virtual std::ostream & save (std::ostream &out) const=0
0 virtual std::istream & restore (std::istream &in)=0

The diagram above shows that the following three classes are derived from the class MPO_Obiject.

1.8.3.2.1. Class State

e Purpose: This class represents the state of an MPI process. These states are given by the
enumeration values MPO_STARTED, MPO_CALLED, MPO_PENDING, MPO_FINISHED,
APPL_RUNNING and LAST_STATE_ID.

e Public Methods:
0 MPO_State (MPO_State_id state)
uses the states enumerated above.
virtual int getld () const
virtual int getFamilyld () const
virtual std::ostream & save (std::ostream &out) const
virtual std::istream & restore (std::istream &in)

OO O O O

1.8.3.2.2. Class Typeobject

e Purpose: MPO_Typeobject represents MPI_Types (communicators, datatypes, groups and
operators). For each MPI_Type MPI_foo there is one object MPO_foo. The constructor takes
an argument of type MPI_foo. These arguments are stored in private variables. Necessary
conversions take place in the constructor. For ease of use a conversion function to MPI_foo
exists. Therefore an object of type MPO_foo can be used, wherever an object of type MPI_foo
is required. Vice versa, an argument of type MPI_foo can be passed, wherever type MPO_foo
is expected.

e Public Methods:
o0 virtual int getFamilyld () const

1.8.3.2.2.1. Class Comm

CG2.2-v0.1-UST001- PUBLIC 2445
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

e Purpose: The class MPO_Comm represents the type MP1_Comm.

e Public Methods: Apart from the usual member functions (constructors, destructor, getld(),
save() and restore(), see above), we have additionally:

0 operator MPI_Comm () const
returns the corresponding MPO communicator.

1.8.3.2.2.2. Class Datatype
e Purpose: The class MPO_Datatypes represents the type MPI_Datatype.

e Public Methods: Apart from the usual member functions (constructors, destructor, getld(),
save() and restore(), see above), we have additionally:

0 operator MPI_Datatype () const
returns the corresponding MPO datatype.

1.8.3.2.2.3. Class Group
e Purpose: The class MPO_Group represents the type MPI1_Group.

e Public Methods: Apart from the usual member functions (constructors, destructor, getld(),
save() and restore(), see above), we have additionally:

0 operator MPI_Group () const
returns the corresponding MPO group.

1.8.3.2.2.4. Class Op
e Purpose: The class MPO_Op represents the type MP1_Op.

e Public Methods: Apart from the usual member functions (constructors, destructor, getld(),
save() and restore(), see above), we have additionally:

o0 operator MPI_Op () const
returns the corresponding MPO operator.

1.8.3.2.3. Class Callobject

e Purpose: MPO_Callobject represents MPI_Calls. Several classes are derived from this class,
see below. For each MPI call MPI_foo there is one object MPO_foo.

0 The constructor takes all arguments of the MPI call. These arguments are stored in
private variables.

0 The call to the MPI_foo is made when the member function callNativeMPI() is called.
e Public Methods:
0 virtual int getFamilyld () const
o virtual int caliNativeMPI ()=0
does the MPI-call.
o virtual int callDebugServer ()
handles communication with the debug process.
o virtual string getCallName () const=0

CG2.2-v0.1-UST001- PUBLIC 25/45
MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

is just to get the name of the MPI call.

CG2.2-v0.1-UST001- PUBLIC 26/ 45
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

1.8.3.2.3.1. Class Collective

MPO:MPO_Space

T

P O:MPO_Ohject

I

MPO:MPO_Callobject

I

MPO:MPO_Collective

MPO:MPO_Allgather

MPO:MPO_allgathery

MPO:MPO_Allreduce

rAP O:MPO_AlItoall

MPO:MPO_glitoally

MPO:RP O_Barrier

MPO:MPO_Broast

MPO:MPO_Gather

MPOMPO_Gathery

P O:MPO_Reduce

MPO:MPO_Reduce_scatter

MPO:MPO_Scan

MPO:PO_Scatter

MPO:MPO_Scattery

figure 4 Class Collective
e Purpose: All calls concerning collective communication are derived from this class. The check
of the parameters is implemented as several member functions.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additional member
functions:

o virtual int checkPrerequisites ()

CG2.2-v0.1-UST001- PUBLIC 27145
MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

checks whether the communicator is valid.

o virtual int checkCountType (int count, MPO_Datatype datatype, int kind, int red)
checks whether count and datatype are valid. Kind stands for receive-/ sendcount, red
is set true for MPI_Reduce or MPI_Allreduce.

o virtual int checkRoot (int root)
checks whether root is a valid rank.

o virtual int checkOp (MPO_Op op)
checks if op is a valid operator.

1.8.3.2.3.2. Class Communicatorhandler

RFDMPO_Spaca

I

WFO:WPO_Object

I

MPC-RFD_Callobgact

WPOCMPD_ Cosmunicatorhanddiar

MPO:3APD_Cadeslan

WPDGMPC_Comm_compare

MPC:ARD_Comes_crasia

WAPD:MWPO_Camm_dup

MPCCRFPO_Coms_Trae

MMF QPO _Comm_rank.

APD:MPC_Comm_size

WAPO:MWPO_Comm_spli

AP OMPD Greah

PO PO_Ire icommunicato ra

figure 5 Class Communicatorhandler

e Purpose: All calls for communicator-handling are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallIName(), see above), we have additionally:

CG2.2-v0.1-UST001- PUBLIC 28145
MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

o virtual int checkPrerequisites ()
checks whether communicator is valid.

1.8.3.2.3.2.1. Class Cartesian

FS-MPO_Space

I

MR- PO _Cijecl

!

KECLMPD_Callobject

I

nPO:hPD_ Canmuricalo handler

I

PP =0 Cardasan

POMPO_Cat_coards

MPO: PO _Car_cmale

WPCCMPD_Card_gal

WS- MPO_Cart_map

MPLREO_Lan_rank

WECEMPO_Cat_shif

FP D PO _Cart_sua

MPO:PD_Cardin_ge

RARDFAPO_Diires_crialy
figure 6 Class Cartesian

e Purpose: All calls concerning cartesian coordinates are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallIName(), see above), we have additionally:

o0 virtual int checkPrerequisites ()
checks if communicator is a valid cartesian one.

CG2.2-v0.1-UST001- PUBLIC 29/45

MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

1.8.3.2.3.2.2. Class Graph

W LWL _Cewbjac

[Sanu R Sin C e T I PR TR P P

l

Mol L ungl

1

L R .j'_||| g i RO T _igr ot Ll U TP] I Y AT LT _Celiin (S U A ERERCT TN LS VR B TR | LA LT gl
figure 7 Class Graph

e Purpose: All calls concerning graph coordinates are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether communicator is valid for graph operation.

1.8.3.2.3.2.3. Class Intercommunicators

RPCCMPO Spzca
WP OO b
PO RFO_Calobact
A S Commnialor il e

WP MPI_rlercannuicxs -t

RFC-RPC Comn_menos_ge.p PRS- RAFD Cimina_reninl= sioe AT A3 Cnmm_tasl nlar RPC-RPC Inde i eessta kG L TR s B e T
figure 8 Class Intercommunicators

e Purpose: All calls handling inter-communicators are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor, familyld(),
callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether communicator is valid.

CG2.2-v0.1-UST001- PUBLIC 30/45
MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

1.8.3.2.3.3. Class Environment

MFO_ MFO_Space

f

MPO:MPC_Objact

I

MU MFO_Callohject

WP TP En'.ri'c-nme-r'.l

ME O WMEO_Finalize AP PAPD_Inil MR AR Indizhized

figure 9 Class Environment
e Purpose: This class represents calls concerning MPI itself.

e Public Methods: getFamilyld(), callNativeMPI() and getCallName(), see above.

1.8.3.2.3.4. Class Errhandlers

FAMLI=WT 0l srcH

WIFC: kAP DT ec)
FAPOWFC_ Zalzbiect

T

MPO_WFC_Sratder |

FAPO-WFC Srander_crels 20 P _E rhenzls - = KMPO-WFC_Srhander_ sl WRO-RFD Ertand mr_zsl W R0 Ermn_chace KR FAPD_E mr_song
figure 10 Class Errhandlers

e Purpose: All calls concerning error-handling are derived from this class.
e Public Methods: familyld(), callNativeMPI() and getCallName(), see above.

CG2.2-v0.1-UST001- PUBLIC 31/45
MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

1.8.3.2.3.5. Class Groupconstructor
MED MPD_Spaca
M- PD_Object

WP 2P O_Caloinjacl

AP PO _Grovpoonstrucior

WPRO:WPO_Comn_graup

RAPO:RPC_G naup_diffe rence

MPOL RO _Gug_sxcl

FPO PO _Group_ncl

RFCEWPO_Goap_inte rsecion

MPO WP _GroLp_ranga_sscl

RIPD PO Graup_range_ el

TP QAP0 Giraup_union
figure 11 Class Groupconstructor

e Purpose: All calls constructing new groups are derived from this class.

e Public Methods: Apart from the usual member functions (constructors,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether groups are valid.
o virtual int insertGroup ()
adds a new group to our set.

destructor,

CG2.2-v0.1-UST001- PUBLIC
MARMOTDeveloperManual-
v1.1.12

32/45

crigssSaid DEVEL OPER MANUAL

1.8.3.2.3.6. Class Grouphandler

MPOMPO_Frare

T

RO _ L]

PO RPT Calnkjact

~FIMFO_G suphand o
il
[

FFO M0 _Grup_rark WFOIMFO_Group_soz2

BAFC MR _ G ComRars PO MFO_Group S me WPC PO mup_irmns als_rsr ks

figure 12 Class Grouphandler

e Purpose: All calls handling groups are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o0 virtual int checkPrerequisites ()
checks whether groups are valid.

1.8.3.2.3.7. Class Probes

PAR R PAR s pare
WP PG _Cilyjact

FFO RMFO Callobject

[WPooMPO_Frobes |
1.
| |

MFO MPO_Iprabe MPOMMPD_Froba

figure 13 Class Probes
e Purpose: MPO_Iprobe and MPO_Probe are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()

checks whether tag and communicator are valid and whether source has valid rank.

CG2.2-v0.1-UST001- PUBLIC 33/45
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

1.8.3.2.3.8. Class Pt2Pt

I I= 0 s
WMPOCWFC Tt

MFO-WFC_Calibject
0

PO E P

k4= 2 AP 0_ElZe <m) “FO_RFC_Szquesicad WFCL ™2 Sontice -1
FAP DO ¥PO Bt SECRFD Convpsinn WP FAR D Fandies
W= kPG _HEC- —_— L | g R] R MPC_SEn Y TR e e
FAP 2SR _Faerd _— K> 2P iz

B kAN Henz [I S UL] 2

FAR 3 SF O _Zhe

figure 14 Class Pt2Pt

e Purpose: This class represents point-to-point-calls.
e Public Methods: getFamilyld(), callNativeMPI() and getCallName(), see above.

1.8.3.2.3.8.1. Class Blocking
e Purpose: Most of the blocking calls are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor, familyld(),
callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether tag, rank, datatype and communicator are valid.

1.8.3.2.3.8.2. Class Sendrecvs
e Purpose: Sendrecv and Sendrecv_replace are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether tag, rank, datatype, count and communicator are valid.

1.8.3.2.3.8.3. Class Requestcall
e Purpose: All calls using requests are derived from this class.
e Public Methods: getFamilyld(), callNativeMPI() and getCallName(), see above.

CG2.2-v0.1-UST001- PUBLIC 34 /45
MARMOTDeveloperManual-
v1.1.12

crigssSaid DEVEL OPER MANUAL

1.8.3.2.3.8.3.1. Class Completion

WP WFU_EDe
WP WEN Nl
PO M=C_Calzbjzel
W WFLFER

KFn 30 Fagieet=a |

| AR WFO_Contkda s

W WP _Lenow [SR o T) TP WU e ow W P WP L [S S) R AW el KFHW 2 W aleaw

figure 15 Class Completion

e Purpose: This class represents calls that complete communication using requests.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether number of requests and requests are valid.

0 virtual int eraseRequest (int *my_outcount, int *my_index_array)
checks whether request is to remove from set our_requests.

CG2.2-v0.1-UST001- PUBLIC 35/45
MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

1.8.3.2.3.8.3.2. Class Initiator

MFEO MPFO_Space

I

B MO _ O ect

|

MR MPO_Callohject

I

MP O MPO_PIZFt

I

MEO MO _Reguastcall

I

AP PAFO_Inrator

MR MFO_Bsand_init

MEOCMPO_Ibsand

MEO MO _Iracy

FPOCMPO Irsend

MFO MFO_lsend

MP O MPO_Issand

FAF QMO _Recy_init

MO MF O _Rsand_init

FAFCCMF O _Send_init

MEO MEO_Ssand_init
figure 16 Class Initiator

e Purpose: This class represents calls that initiate communication using requests.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:
o virtual int checkPrerequisites (int id)
checks correctness of count, datatype, request, rank and tag.
CG2.2-v0.1-UST001- PUBLIC 36 /45

MARMOTDeveloperManual-
v1.1.12

crgs5Gd DEVEL OPER MANUAL

1.8.3.2.3.8.3.3. Class Starts

BAP PO _Space
FAFOCMPO_Objoct
FAPCr A PO _Callobject
AP O PP O FEZFP
PP AT D _Regquestcall

[

| MAFC MAFCH Starts |
| t

AP AP O Siar PP pA P Siariall

figure 17 Class Starts

e Purpose: This class represents calls that start persistent communication requests.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:
0 virtual int checkPrerequisites ()
checks whether requests are valid.
1.8.3.2.3.8.3.4. Class Tests
P D MPO_Space
MF O MPO_Ofject
PO RP O _Call pbject
WP CzBAPO_FIZPE
FPOCMPO _Reaguesicall
| MPOCMPO_Tasls
I T I
KPP O PO _Tes WP O RIPO_Testall KPP O BAPD_Teatany AP AP0 _Tesis0me
figure 18 Class Tests
e Purpose: This class represents calls that test communication using requests.
e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:
o0 virtual int checkPrerequisites ()
checks whether requests are valid.
CG2.2-v0.1-UST001- PUBLIC 37145

MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

o virtual int eraseRequest (int *my_outcount, int *my_index_array)
checks whether request is to remove from set our_requests.

1.8.3.2.3.9. Class Typeconstructors

MFC: WPC_Spacs

T

WP WPO_Chers

FAFTT BAPTT T alligbgp=r:

CFOUMFC _Typzeonsimzizm

MPDEMPD_Tyae_hwsrnr WP MPO_Tye_insmesd W FCEMFC_Typs_siiucl WP PO _TapE_vaemr

MA0-MPD_Tyne_conlgous | MPC:MPO_wpe_Ri-desad

figure 19 Class Typeconstructors

e Purpose: All calls constructing new datatypes are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor, familyld(),
callNativeMPI(), getCallName(), see above), we have additionally:

o virtual int checkPrerequisites ()
checks whether count and datatype are valid.

1.8.3.2.3.10. Class Typehandlers

FAT P T Fpares
B
BAZ 2P0 _Cb ezl

FPD-WYPO Crlnsjsrd

MPOCCFO _Typshanziers
¥

[I | I]
WFCIWFO_#dzrags MFCUM™0_Type_conk WFCI WD T _sdem WFC: M= _Tee_fn2e RAFCE M= _Tape_I2 WFC.MPO_Tee_sioa P DCEFO_Topz_ob

figure 20 Class Typehandlers

e Purpose: All calls handling datatypes are derived from this class.

e Public Methods: Apart from the usual member functions (constructors, destructor,
getFamilyld(), callNativeMPI(), getCallName(), see above), we have additionally:

o0 virtual int checkPrerequisites ()
checks whether datatypes are valid.

1.9. HOW TO ADD NEW CALLS AND CLASSES

e TODO: examples
e Check if there already is an appropriate base class, if not, you may want to create one.

e Implement the MPI call according to this example. TODO

CG2.2-v0.1-UST001- PUBLIC 38/45

MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

e Use javadoc comments for documentation. They serve also as base for the documentation
generated by doxygen.

1.10. PRODUCT INTERFACES

The tool provides the API as defined in the MPI standard version 1.2. More precise details follow
below.

1.10.1. Output
e Violation of the MPI standard will be reported as error.

e Unusual behaviour or possible problems will be reported as warnings. E.g. it is unusual but
allowed to have zero length messages.

e Notes will be displayed when harmless but remarkable behaviour occurs. E.g.
MPI_Type_commit might be used twice to commit a datatype that has already been
committed.

e The MPI calls will be traced on each node throughout the whole application.

e When detecting a deadlock the last few calls (as configured by the user) can be traced back on
each node.

e The output will be written to standard output or to a file. The format will be human readable.
e The output log is produced by the additional process running on the debug server.

1.10.2. Configuration
The following configurations can be set via environment variables:
e Three levels of debug mode:
1. errors;
2. errors and warnings;
3. errors, warnings and remarks.
e Tracing, i.e. whether MPI calls shall be traced or not.

e Maximum message time, i.e. how long a processing unit is allowed to stay idle before it is
reported as pending.

e Maximum number of MPI calls that can be traced back in the case of a dead-lock.

1.11. FURTHER GUIDELINES FOR DEVELOPMENT

e Comment your code!!! Use javadoc comments for documentation. They serve also as base for
the documentation generated by doxygen.

e Use descriptive names for classes, methods, variables, etc!

e Do not use magic numbers! This makes horrible and unreadable code. Use constants or enums
instead.

e TODO: examples

CG2.2-v0.1-UST001- PUBLIC 39/45
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

RODUCT TESTING

MARMOT was tested with

simple test programs,

applications from WP1,

other applications and

benchmarks (for example NAS Parallel Benchmarks)

on different platforms, using different compilers and MPI implementations, for example on

Linux Clusters with 1A32/1A64 processors,
IBM Regatta and
NEC SX systems.

On the CrossGrid testbed, MPI jobs may be submitted using Migrating Desktop or using jdl or rsl
scripts. MARMOT’s log files reveal if the tool is able to find the errors that were deliberately put into
the code or not. Sometimes the MPI implementation itself gives an error message, but there are also
many cases where the MPI implementation does not detect any error and simply gives wrong results or
is aborted for unknown reasons.

MARMOT’s source code contains two subdirectories TEST_C and TEST_F with simple MPI
test programs written in C/Fortran. Some of these programs are correct, some of these
programs are erroneous to evoke MARMOT’s warnings. Users may play with these programs
to get a taste of MARMOT.

For the Crossgrid tutorial there is a special program TEST_C/cg-tutorial-marmot-exercise.c.

Any application from WP 1 might be used but will not evoke enough warnings from
MARMOT to really demonstrate its functionality.

After installation, the directories /opt/cg/bin/cg-wp2.2-marmot/C and /opt/cg/bin/cg-wp2.2-
marmot/F and /opt/cg/bin/cg-wp2.2-marmot-g2/C and /opt/cg/bin/cg-wp2.2-marmot-g2/F
contain some example binaries, see section 1.1 about the files to be installed.

To run the application with MARMOQOT, one has to add an additional process working as debug
server, i.e. one needs (n+1) instead of n processes

$ mpirun -np (n+1) foo
MARMOT’s output is sent to stderr.

For the use on the testbed, the simple test program basic is installed in /opt/cg/bin/cg-wp2.2-
marmot/C. It only performs MPI_Init and MPI_Finalize. Use for example a jdl file like the
following basic.jdl:

Executable = "basic";

JobType = "MPICH";

NodeNumber = 3;

VirtualOrganisation = "cg";

StdOutput = "basic.out";

StdError = "$HOME/basic.err";

InputSandbox = {"basic"};

OutputSandbox = {"basic.out","$HOME/basic.err'};

to submit your job via Resource Broker
$ edg-job-submit basic.jdl
You can watch the output with something like

CG2.2-v0.1-UST001- PUBLIC 40/ 45
MARMOTDeveloperManual-

v1.1.12

Crigs5SaGd DEVELOPER MANUAL

$ tail —f basic.err

on the CE where the job runs, and later on, you can get the output with edg-job-get-output.

Same for mpich-g2 jobs.
Applications written in C can be compiled accordingly to this example:

gcc -l/opt/cg/mpich/include -c basic.c
g++ -0 basic basic.o -L../LIB -ldmpi -Impo -L/opt/cg/mpich/lib -Impich

(with gce = /opt/gce-3.2.2/bin/gee-3.2.2, g++ = /opt/gee-3.2.2/bin/g++-3.2.2)
It is also possible to use mpicc, in this case it is very important to link
the proper version of the libstdc++ (i.e. same version as was used to compile
the MARMOT libraries, i.e. specify the correct path for -Istdc++):
mpicc -c basic.c
mpicc -0 basic basic.o -L../LIB -ldmpi -Impo -L/opt/cg/mpich/lib -Impich \
-L/opt/gce-3.2.2/1ib -Istdc++
Applications written in Fortran can be compiled accordingly to this example:
(with g77 = /opt/gcc-3.2.2/bin/g77-3.2.2, g++ = Jopt/gce-3.2.2/bin/g++-3.2.2):
g77 -l/opt/cg/mpich/include -g -O2 -c basic.f
g++ -l/opt/cg/mpich/include -g -O2 -0 basic basic.o \
-L../L1B -ldmpi -Ifmpo -Impo \
-L/opt/cg/mpich/lib -lmpich \
-L/opt/gcc-3.2.2/lib/gee-1ib/i686-pc-linux-gnu/3.2.2 \
-L/opt/gcc-3.2.2/lib/gec-1ib/i686-pe-linux-gnu/3.2.2/../../.. -Ifrtbegin \
-lg2c -Im -lgcc_s

It is also possible to use mpif77, in this case it is very important to link
the proper version of the libstdc++ (i.e. same version as was used to compile

the MARMOT libraries, i.e. specify the correct path for -Istdc++):

mpif77 -c basic.f

mpif77 -0 basic basic.o -L../LIB -ldmpi -Ifmpo -Impo \
-L/opt/cg/mpich/lib -Impich \

-L/opt/gce-3.2.2/1ib -Istdc++

See also the USERS_GUIDE and CONFIG-EXAMPLES file in MARMOT’s distribution.

CG2.2-v0.1-UST001- PUBLIC
MARMOTDeveloperManual-

v1.1.12

41745

Crigs5SaGd DEVELOPER MANUAL

CONTACT INFORMATION AND CREDITS
If you have any questions, suggestions or bug reports, please contact the developers
Bettina Krammer, krammer@hlrs.de, Matthias Muller, mueller@hlrs.de
HLRS
Allmandring 30
D-70565 Stuttgart
Phone: ++49 711 685 8038
Fax: ++49 711 678 7626

CG2.2-v0.1-UST001- PUBLIC 42 /45
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

THE GPL LICENSE AGREEMENT

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program"”,
below, refers to any such program or work, and a "work based on the Program"” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “"modification”.) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program).Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

CG2.2-v0.1-UST001- PUBLIC 43 /45
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for non-commercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

CG2.2-v0.1-UST001- PUBLIC 44/ 45
MARMOTDeveloperManual-
v1.1.12

Crigs5SaGd DEVELOPER MANUAL

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

CG2.2-v0.1-UST001- PUBLIC 45/ 45
MARMOTDeveloperManual-
v1.1.12

